Emerging Coldwater Fish Disease: Diagnosis and Treatment

  • Chapter
  • First Online:
Aquaculture and Conservation of Inland Coldwater Fishes
  • 29 Accesses

Abstract

The rapid growth and expansion of coldwater aquaculture are also marked by the increased occurrence of new potential health issues. Inclusive diagnostic procedures encompassing clinical observations, environmental assessments, and microbiological and molecular techniques stand as the basis for effective disease management. Enhancing the understanding of important diseases and disorders through improved diagnostic methodologies would help in early intervention and the formulation of a more specific course of therapy. Though a number of diseases are reported from coldwater, this chapter covers the few common emerging health problems responsible for mass mortalities in upland farms and hatcheries. These include ich infection, whirling disease, diagenic and monogenic trematodes, argulosis and fungal infestation, enteric red mouth disease, coldwater bacterial diseases, infectious pancreatic necrosis, and infectious hematopoietic necrosis, as well as dissolved oxygen, temperature, and ammonia toxicity, Information on disease investigation protocols including upcoming promising fish disease diagnostic techniques is described. Using innovative and updated diagnostic techniques for fish diseases significantly reduces the risks associated with water deterioration and fish diseases, supports the choice of targeted medication, reduces disease control costs, protects valuable fish stocks, and increases overall fish production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendorf FW, Spruell P, Utter FM (2001) Opinion-fish health-whirling disease and wild trout: Darwinian fisheries management-many of the actions that are being taken to combat whirling disease may have harmful effects on the long-term. Fish Am Fish Soc 26(5):27–29

    Google Scholar 

  • Amend DF (1970) Control of infectious hematopoietic necrosis virus disease by elevating the water temperature. J Fish Board Canada 27(2):265–270

    Article  Google Scholar 

  • Andrews JW, Matsuda Y (1975) The influence of various culture conditions on the oxygen consumption of channel catfish. Trans Am Fish Soc 104(2):322–327

    Article  Google Scholar 

  • Austin B, Austin DA, Munn CB (2007) Bacterial fish pathogens: disease of farmed and wild fish, vol 26. Springer, Dordrecht, p 552

    Google Scholar 

  • Barbedo JGA (2023) Computer-aided disease diagnosis in aquaculture: current state and perspectives for the future. http://www.alice.cnptia.embrapa.br/handle/doc/986333. Accessed 8 Mar 2023

  • Billi JL, Wolf K (1969) Quantitative comparison of peritoneal washes and feces for detecting infectious pancreatic necrosis (IPN) virus in carrier brook trout. J Fish Board Canada 26(6):1459–1465

    Article  Google Scholar 

  • Blazer V, Stark K, Starliper C (1996) Unusual histologic manifestations of Flexibacterpsychrophila in hatchery salmonids. In 21st Annual Eastern Fish Health Workshop, Gloucester Point, VA, p 10

    Google Scholar 

  • Bohara K, Joshi P, Acharya KP, Ramena G (2023) Emerging technologies revolutionising disease diagnosis and monitoring in aquatic animal health. Rev Aquac

    Google Scholar 

  • Bootland LM (1999) Infectious haematopoietic necrosis virus. Viral, bacterial and fungal infections

    Google Scholar 

  • Boyd CE (1979) Water quality in warmwater fish ponds. Auburn University, Auburn, AL

    Google Scholar 

  • Brown LL, Cox WT, Levine RP (1997) Evidence that the causal agent of bacterial cold-water disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Dis Aquat Org 29(3):213–218

    Article  Google Scholar 

  • Buchmann K, Bresciani J (2006) Monogenea (phylum Platyhelminthes). In: Fish diseases and disorders. Volume 1: protozoan and metazoan infections. Cabi, Wallingford, pp 297–344

    Chapter  Google Scholar 

  • Busch RA, Lingg AJ (1975) Establishment of asymptomatic carrier state infection of enteric red mouth disease in rainbow trout ( Salmo gairdneri). J Fish Res Board Can 32:2429–2432

    Article  Google Scholar 

  • Daoust PY, Ferguson HW (1985) Nodular gill disease: a unique form of proliferative gill disease in rainbow trout, Salmo gairdneri Richardson. J Fish Dis 8(6):511–522

    Article  Google Scholar 

  • Daskalov H, Robertson PW, Austin B (2000) Influence of oxidized lipids in diets on the development of rainbow trout fry syndrome. J Fish Dis 23(1):7–14

    Article  Google Scholar 

  • Dickerson HW (2006) Ichthyophthiriusmultifiliis and Cryptocaryon irritans (phylum Ciliophora). Fish diseases and disorders: Protozoan and metazoan infections 1: 116–153

    Google Scholar 

  • Dickerson HW, Evans DL, Gratzek JB (1986) Production and preliminary characterization of murine monoclonal antibodies to Ichthyophthiriusmultifiliis, a protozoan parasite of fish. Am J Vet Res 47(11):2400–2404

    CAS  PubMed  Google Scholar 

  • Emerson K, Russo RC, Lund RE, Thurston RV (1975) Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Board Canada 32(12):2379–2383

    Article  CAS  Google Scholar 

  • FAO (2009) Oncorhynchus mykiss. In: Cultured aquatic species fact sheets. Text by Cowx IG, Edited and compiled by Crespi V, New M. CD-ROM (multilingual)

    Google Scholar 

  • FAO (2022) The state of world fisheries and aquaculture 2022. Towards blue transformation. FAO, Rome. https://doi.org/10.4060/cc0461en

    Book  Google Scholar 

  • Finn JP, Nielsen NO (1971) The effect of temperature variation on the inflammatory response of rainbow trout. J Pathol 105(4):257–268

    Article  CAS  PubMed  Google Scholar 

  • Foott JS, Free D, McDowell T, Arkush KD, Hedrick RP (2006) Infectious hematopoietic necrosis virus transmission and disease among juvenile Chinook salmon exposed in culture compared to environmentally relevant conditions. San Francisco Estuary Watershed Sci 4(1)

    Google Scholar 

  • Frantsi C, Savan M (1971) Infectious pancreatic necrosis virus—temperature and age factors in mortality. J Wildl Dis 7(4):249–255

    Article  PubMed  Google Scholar 

  • Hadidi S, Glenney GW, Welch TJ, Silverstein JT, Wiens GD (2008) Spleen size predicts resistance of rainbow trout to Flavobacterium psychrophilum challenge. J Immunol 180(6):4156–4165

    Article  CAS  PubMed  Google Scholar 

  • Halliday MM (1973) Studies on Myxosomacerebralis, a parasite of salmonids. II. The development and pathology of Myxosomacerebralis in experimentally infected rainbow trout (Salmo gairdneri) fry reared at different water temperatures. Nord Vet Med 25(7):349–358

    CAS  PubMed  Google Scholar 

  • Hawke JP, Thune RL (1992) Systemic isolation and antimicrobial susceptibility of Cytophaga columnaris from commercially reared channel catfish. J Aquat Anim Health 4(2):109–113

    Article  Google Scholar 

  • Hofer B (1903) Uber die drehkrankheit der regenbogenforelle. Allgem Fischereizeitung 28(1):7–8

    Google Scholar 

  • Hoffman GL (1976) Whirling disease of trout, vol 47. US Fish and Wildlife Service, pp 0–10

    Google Scholar 

  • Hoffman GL, Putz RE (1969) Host susceptibility and the effect of aging, freezing, heat, and chemicals on spores of Myxosomacerebralis. Prog Fish Cult 31(1):35–37

    Article  Google Scholar 

  • Hofmann GL (1967) Parasites of Noth American freshwater fish. University of California Press, Berkeley, CA, p 496p

    Book  Google Scholar 

  • Holt RA (1987) Cytophaga psychrophila, the causative agent of bacterial cold-water disease in salmonid fish. Oregon State University, Corvallis, OR

    Google Scholar 

  • Hu J, Li D, Duan Q, Chen G, Si X (2012) Preliminary design of a recognition system for infected fish species using computer vision. In Computer and Computing Technologies in Agriculture V: 5th IFIP TC 5/SIG 5.1 Conference, CCTA 2011, Bei**g, China, October 29–31, 2011, Proceedings, Part I 5, Springer Berlin, Heidelberg, pp 530–534

    Google Scholar 

  • Ilardi P, Fernandez J, Avendano-Herrera R (2009) Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59(12):3001–3005

    Article  CAS  PubMed  Google Scholar 

  • Ilardi P, Abad J, Rintamäki P, Bernardet JF, Avendaño-Herrera R (2010) Phenotypic, serological and molecular evidence of Chryseobacterium piscicola in farmed Atlantic salmon, Salmo salar L., in Finland. J Fish Dis 33(2):179–181

    Article  CAS  PubMed  Google Scholar 

  • Kabata Z, Margolis L (1988) Guide to the parasites of fishes of Canada, Part II: Crustacea. Department of Fisheries and Oceans, Ottawa

    Google Scholar 

  • LaFrentz BR, LaPatra SE, Call DR, Cain KD (2008) Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 26(44):5582–5589

    Article  CAS  PubMed  Google Scholar 

  • Lapatra SE (1998) Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish. J Aquat Anim Health 10(2):121–131

    Article  Google Scholar 

  • Lou D, Chen M, Ye J (2007) Study on a fish disease case reasoning system based on image retrieval. N Z J Agric Res 50(5):887–893

    Article  Google Scholar 

  • Lyholt HCK, Buchmann K (1996) Diplostomumspathaceum: effects of temperature and light on cercarial shedding and infection of rainbow trout. Dis Aquat Org 25(3):169–173

    Article  Google Scholar 

  • Lyons J, Zorn T, Stewart J, Seelbach P, Wehrly K, Wang L (2009) Defining and characterizing coolwater streams and their fish assemblages in Michigan and Wisconsin, USA. N Am J Fish Manag 29(4):1130–1151

    Article  Google Scholar 

  • Madetoja J, Dalsgaard I, Wiklund T (2002) Occurrence of Flavobacterium psychrophilum in fish-farming environments. Dis Aquat Org 52(2):109–118

    Article  Google Scholar 

  • Madetoja J, Nystedt S, Wiklund T (2003) Survival and virulence of Flavobacterium psychrophilum in water microcosms. FEMS Microbiol Ecol 43(2):217–223

    Article  CAS  PubMed  Google Scholar 

  • Mallik SK, Shahi N, Pandey NN, Haldar RS, Pande A (2010) Occurrence of fish louse (Argulus sp.) on Indian snow trout (Schizothorax richardsonii) and golden mahseer (Tor putitora) in subtropical Himalayan Lake of Bhimtal, Uttarakhand, India. Indian J Anim Sci 80(11):1152–1156

    Google Scholar 

  • Matthews RA (2005) Ichthyophthiriusmultifiliis Fouquet and ichthyophthiriosis in freshwater teleosts. Adv Parasitol 59:159–241

    Article  CAS  PubMed  Google Scholar 

  • McAllister KW, McAllister PE (1988) Transmission of infectious pancreatic necrosis virus from virus carrier striped bass to brook trout. Dis Aquat Org 4:101–104

    Article  Google Scholar 

  • McKnight IJ, Roberts RJ (1976) The pathology of infectious pancreatic necrosis. I. The sequential histopathology of the naturally occurring condition. Br Vet J 132(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Meade JW (1985) Allowable ammonia for fish culture. Prog Fish Cult 47(3):135–145

    Article  CAS  Google Scholar 

  • Meyer FP (1974) Parasites of freshwater fishes; II, Protozoa 3. Ichthyophthiriusmultifiliis

    Google Scholar 

  • Meyer FP (1978) Incidence of disease in warmwater fish farms in the south-Central United States. Mar Fish Rev 40(3):38–41

    Google Scholar 

  • Mikheev VN, Pasternak AF, Taskinen J, Valtonen TE (2013) Grou** facilitates avoidance of parasites by fish. Parasit Vectors 6:1–8

    Article  Google Scholar 

  • Mulcahy D (1983) Control of mortality caused by infectious hematopoietic necrosis virus. Proceedings; viral diseases of salmonid fishes in the Columbia River basin. Bonneville Power Administration, Portland, Oregon, pp 51–71

    Google Scholar 

  • Mulcahy D, Klaybor D, Batts WN (1990) Isolation of infectious hematopoietic necrosis virus from a leech (Piscicola salmositica) and a copepod (Salmincola sp.), ectoparasites of sockeye salmon Oncorhynchus nerka. Dis Aquat Org 8(1):29–34

    Article  Google Scholar 

  • Murray CN, Riley JP (1969) The solubility of gases in distilled water and sea water—II. Oxygen. Deep Sea Res Oceanogr Abstr 16(3):311–320

    Article  CAS  Google Scholar 

  • Murray AG, Busby CD, Bruno DW (2003) Infectious pancreatic necrosis virus in Scottish Atlantic salmon farms, 1996–2001. Emerg Infect Dis 9(4):455

    Article  PubMed  PubMed Central  Google Scholar 

  • Neish GA, Hughes GC (1980) Fungal diseases of fish. TFH Publications, Neptune, NJ

    Google Scholar 

  • Noga EJ (2010) Fish disease: diagnosis and treatment. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Noga EJ (2021) Fungal diseases of marine and estuarine fishes. In: Pathobiology of marine and estuarine organisms. CRC Press, Boca Raton, FL, pp 85–109

    Chapter  Google Scholar 

  • OIE (2019) Aquatic Animal Health Code, Twenty-second Edition. pp 301

    Google Scholar 

  • Parker JC (1965) Studies on the natural history of Ichthyophthiriusmultifiliis Fouquet 1876, an ectoparasitic ciliate of fish. Thesis, Department of Zoology, University of Maryland, pp 83

    Google Scholar 

  • Peterman MA, Posadas BC (2019) Direct economic impact of fish diseases on the East Mississippi catfish industry. N Am J Aquac 81(3):222–229

    Article  Google Scholar 

  • Riche M, Pfeiffer TJ, Garcia J (2006) Evaluation of a sodium hydroxymethanesulfonate product for reducing total ammonia nitrogen in a small-scale rotifer batch culture system. N Am J Aquac 68(3):199–205

    Article  Google Scholar 

  • Scott WW, O’Bier AH (1962) Aquatic fungi associated with diseased fish and fish eggs. Prog Fish Cult 24(1):3–15

    Article  Google Scholar 

  • Seppälä O, Karvonen A, Valtonen ET (2005) Manipulation of fish host by eye flukes in relation to cataract formation and parasite infectivity. Anim Behav 70(4):889–894

    Article  Google Scholar 

  • Seppälä O, Karvonen A, Valtonen ET (2011) Eye fluke-induced cataracts in natural fish populations: is there potential for host manipulation? Parasitology 138(2):209–214

    Article  PubMed  Google Scholar 

  • Shariff M, Richards RH, Christina S (1980) The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri Richardson with eye flukes, Diplostomum spp. J Fish Dis 3:455–465

    Article  Google Scholar 

  • Starliper CE (2011) Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2(2):97–108. https://doi.org/10.1016/j.jare.2010.04.001

    Article  Google Scholar 

  • Stevenson R, Flett D, Raymond BT (1993) Enteric redmouth (ERM) and other enterobacterial infections of fish. Bacterial diseases of fish, pp 80–105

    Google Scholar 

  • Tiffney WN (1939a) The host range of Saprolegnia parasitica. Mycologia 31(3):310–321

    Article  Google Scholar 

  • Tiffney WN (1939b) The identity of certain species of the Saprolegniaceae parasitic to fish. J Elisha Mitchell Sci Soc 55(1):134–151

    Google Scholar 

  • Tobback E, Decostere A, Hermans K, Haesebrouck F, Chiers K (2007) Yersinia ruckeri infections in salmonid fish. J Fish Dis 30(5):257–268

    Article  CAS  PubMed  Google Scholar 

  • Tucker CS (1985) Channel catfish culture. Dev Aquac Fish Sci 15

    Google Scholar 

  • Vatsos IN, Thompson KD, Adams A (2001) Adhesion of the fish pathogen Flavobacterium psychrophilum to unfertilized eggs of rainbow trout (Oncorhynchus mykiss) and n-hexadecane. Lett Appl Microbiol 33(3):178–182

    Article  CAS  PubMed  Google Scholar 

  • Whipps CM, Mansour E-M, Hedrick RP, Vicki B, Kent ML (2004) Myxobolus cerebralis internal transcribed spacer 1(ITS-1) sequences support recent spread of the parasite to North America and within Europe. Dis Aquat Org 60:105–108

    Article  CAS  Google Scholar 

  • Yamaguti S (1968) Monogenetic trematodes of Hawaiian fishes. University of Hawaii Press, Honolulu

    Book  Google Scholar 

  • Yasutake WT (1979) Histopathology of yearling sockeye salmon (Oncorhynchus nerka) infected with infectious hematopoietic necrosis (IHN). Fish Pathol 14(2):59–64

    Article  Google Scholar 

  • Zhang LH (2003) Quorum quenching and proactive host defense. Trends Plant Sci 8(5):238–244

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, S. (2024). Emerging Coldwater Fish Disease: Diagnosis and Treatment. In: Sarma, D., Chandra, S., Mallik, S.K. (eds) Aquaculture and Conservation of Inland Coldwater Fishes. Springer, Singapore. https://doi.org/10.1007/978-981-97-1790-3_13

Download citation

Publish with us

Policies and ethics

Navigation