Modern Advances to Combat Plant Viruses and Their Vectors

  • Chapter
  • First Online:
Molecular Dynamics of Plant Stress and its Management
  • 43 Accesses

Abstract

Crops are the major source of food and fulfill the nutritional needs of the human population around the globe. Viral disease pandemics menace the crop yield and threaten global food security. For their transmission, most of the viruses rely on vectors such as insects. For that purpose, various transmission pathways must be deciphered to cease the unwanted viral outbreak. Furthermore, the host-virus-environment interactions can play a promising role in construing the dynamics of viral infestation. Transgenesis and targeted mutagenesis can be employed to counter viruses and vectors. Notably, novel virus detection and management strategies confer rapid, precise, and cost-effective alternatives to conventional practices that are deemed to be labor-intensive and expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abudayyeh OO et al (2017) RNA targeting with CRISPR–Cas13. Nature 550(7675):280–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Alon DM et al (2021) Differential detection of the tobamoviruses tomato mosaic virus (ToMV) and tomato brown rugose fruit virus (ToBRFV) using CRISPR-Cas12a. Plan Theory 10(6):1256

    CAS  Google Scholar 

  • Aman R et al (2020) Efficient, rapid, and sensitive detection of plant RNA viruses with one-pot RT-RPA–CRISPR/Cas12a assay. Front Microbiol 11:610872

    Article  PubMed  PubMed Central  Google Scholar 

  • Amari K, Niehl A (2020) Nucleic acid-mediated PAMP-triggered immunity in plants. Curr Opin Virol 42:32–39

    Article  CAS  PubMed  Google Scholar 

  • Amari K et al (2021) Potential impact of global warming on virus propagation in infected plants and agricultural productivity. Front Plant Sci 12:649768

    Article  PubMed  PubMed Central  Google Scholar 

  • Awan MJA et al (2022) Genome edited wheat-current advances for the second green revolution. Biotechnol Adv 60:108006

    Article  CAS  PubMed  Google Scholar 

  • Awan MJA et al (2023) Genome editing: mechanism and utilization in plant breeding. In: Advanced crop improvement, Theory and practice, vol 1. Springer, Cham, pp 457–488

    Chapter  Google Scholar 

  • Ben Rejeb I et al (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plan Theory 3(4):458–475

    Google Scholar 

  • Bragard C et al (2013) Status and prospects of plant virus control through interference with vector transmission. Annu Rev Phytopathol 51:177–201

    Article  CAS  PubMed  Google Scholar 

  • Broughton JP et al (2020) CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol 38(7):870–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JS et al (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387):436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash SP et al (2021) Climate change: how it impacts the emergence, transmission, resistance and consequences of viral infections in animals and plants. Crit Rev Microbiol 47(3):307–322

    Article  CAS  PubMed  Google Scholar 

  • Del Toro FJ et al (2015) High temperature, high ambient CO2 affect the interactions between three positive-sense RNA viruses and a compatible host differentially, but not their silencing suppression efficiencies. PLoS One 10(8):e0136062

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatnassi H et al (2015) Within-crop air temperature and humidity outcomes on spatio-temporal distribution of the key rose pest Frankliniella occidentalis. PLoS One 10(5):e0126655

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao H et al (2020) Superior field performance of waxy corn engineered using CRISPR–Cas9. Nat Biotechnol 38(5):579–581

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez Guzman M et al (2022) New approaches to improve crop tolerance to biotic and abiotic stresses. Physiol Plant 174(1):e13547

    Article  CAS  PubMed  Google Scholar 

  • Gootenberg JS et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajian R et al (2019) Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 3(6):427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James P, Steger MB (2014) A genealogy of ‘globalization’: the career of a concept. Globalizations 11:417–434

    Article  Google Scholar 

  • Jiao J et al (2021) Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay. Plant Biotechnol J 19(2):394–405

    Article  CAS  PubMed  Google Scholar 

  • **ek M et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RA (2018) Plant and insect viruses in managed and natural environments: novel and neglected transmission pathways. Adv Virus Res 101:149–187

    Article  PubMed  Google Scholar 

  • Jones RA (2020) Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses 12(12):1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RA, Barbetti MJ (2012) Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CABI Rev 2012:1–33

    Article  Google Scholar 

  • Jones RA, Naidu RA (2019) Global dimensions of plant virus diseases: current status and future perspectives. Annu Rev Virol 6:387–409

    Article  CAS  PubMed  Google Scholar 

  • Joshi N et al (2022) Perspectives in advance technologies/strategies for combating rising CO2 levels in the atmosphere via CO2 utilisation: a review. IOP Conf Ser Earth Environ Sci 1100:012020

    Article  Google Scholar 

  • Kellner MJ et al (2019) SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 14(10):2986–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers J et al (2020) How plants sense and respond to stressful environments. Plant Physiol 182(4):1624–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahas A et al (2021) LAMP-coupled CRISPR–Cas12a module for rapid and sensitive detection of plant DNA viruses. Viruses 13(3):466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marqués M-C et al (2022) Diagnostics of infections produced by the plant viruses TMV, TEV, and PVX with CRISPR-Cas12 and CRISPR-Cas13. ACS Synth Biol 11(7):2384–2393

    Article  PubMed  PubMed Central  Google Scholar 

  • Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23(1):1–16

    Article  PubMed  Google Scholar 

  • Niehl A et al (2014) Comparison of the Oilseed rape mosaic virus and Tobacco mosaic virus movement proteins (MP) reveals common and dissimilar MP functions for tobamovirus spread. Virology 456:43–54

    Article  PubMed  Google Scholar 

  • Nyalugwe EP et al (2014) Preliminary studies on resistance phenotypes to Turnip mosaic virus in Brassica napus and B. carinata from different continents and effects of temperature on their expression. Eur J Plant Pathol 139:687–706

    Article  Google Scholar 

  • Pardee K et al (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5):1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Park C-J, Park JM (2019) Endoplasmic reticulum plays a critical role in integrating signals generated by both biotic and abiotic stress in plants. Front Plant Sci 10:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Pell B et al (2019) Modeling nutrient and disease dynamics in a plant-pathogen system. Math Biosci Eng 16(1):234–264

    Article  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11(11):745–760

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran V et al (2021) CRISPR-based isothermal next-generation diagnostic method for virus detection in sugarbeet. Front Microbiol 12:679994

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L et al (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134(4):1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo Y, Loo EPI (2020) Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225(1):87–104

    Article  PubMed  Google Scholar 

  • Sapranauskas R et al (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9(4):628–631

    Article  CAS  PubMed  Google Scholar 

  • Teixeira RM et al (2019) Virus perception at the cell surface: revisiting the roles of receptor-like kinases as viral pattern recognition receptors. Mol Plant Pathol 20(9):1196–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trebicki P (2020) Climate change and plant virus epidemiology. Virus Res 286:198059

    Article  CAS  PubMed  Google Scholar 

  • TrÄ™bicki P et al (2015) Virus disease in wheat predicted to increase with a changing climate. Glob Chang Biol 21(9):3511–3519

    Article  PubMed  Google Scholar 

  • Tyczewska A et al (2018) Towards food security: current state and future prospects of agrobiotechnology. Trends Biotechnol 36(12):1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Wosula E et al (2015) The effect of temperature, relative humidity, and virus infection status on off-host survival of the wheat curl mite (Acari: Eriophyidae). J Econ Entomol 108(4):1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Zafar K et al (2021) Genome editing to develop disease resistance in crops. In: Genome engineering for crop improvement. Wiley, Hoboken, pp 224–252

    Chapter  Google Scholar 

  • Zaffaroni M et al (2020) An ecophysiological model of plant–pest interactions: the role of nutrient and water availability. J R Soc Interface 17(172):20200356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2021) Rapid detection of tomato spotted wilt virus with Cas13a in tomato and Frankliniella occidentalis. Front Microbiol 12:745173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hira Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehman, A.U., Awan, M.J.A., Raza, A., Kamal, H. (2024). Modern Advances to Combat Plant Viruses and Their Vectors. In: Shahid, M., Gaur, R. (eds) Molecular Dynamics of Plant Stress and its Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-1699-9_26

Download citation

Publish with us

Policies and ethics

Navigation