Introduction to Fractional Calculus and Modelling

  • Chapter
  • First Online:
Modeling Calcium Signaling

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 22 Accesses

Abstract

This chapter aims to familiarize the reader with the new field of mathematics known as ‘fractional calculus’, as well as the operators, techniques, and additional mathematical definitions that will be useful in the work that will be covered in subsequent chapters. A significant component of contemporary biological research is its dependence on computers. In order to understand the multilayered complexity of biological systems, mathematical models are essential. The purpose of the dynamic mathematical model is to support biological research. The mechanism of modeling of any biological phenomenon is given in this chapter along with the diagrammatical representation. The methods used for solving the fractional differential equations used in the next chapters are also elaborated here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal RP, Humbert P (1953) On the mittag-leffler function and some of its generalizations. Bull Sci Math 77(2):180–185

    Google Scholar 

  • Alber HD (1998) Materials with memory. Initial boundary value problems for constitutive equations with internal variables. Springer, Berlin, Germany, p 170

    Google Scholar 

  • Anderson DR, Ulness DJ (2015) Newly defined conformable derivatives. Adv Dyn Syst Appl 10(2):109–137

    Google Scholar 

  • Assadi I, Charef A, Copot D, De Keyser R, Bensouici T, Ionescu C (2017) Evaluation of respiratory properties by means of fractional order models. Biomed Signal Proc Control 34:206–213

    Article  Google Scholar 

  • Atangana A (2017) Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos, Solitons & Fractals 102:396–406

    Article  Google Scholar 

  • Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210

    Article  CAS  Google Scholar 

  • Baleanu D, Fernandez A, Akgül A (2020) On a fractional operator combining proportional and classical differintegrals. Mathematics 8(3):360

    Article  Google Scholar 

  • Bildik N (2017) General convergence analysis for the perturbation iteration technique. Turkish J Math Comput Sci 6:1–9

    Google Scholar 

  • Blair GS (1944) Analytical and integrative aspects of the stress-strain-time problem. J Sci Instrum 21(5):80

    Article  Google Scholar 

  • Boltzmann L (1874) Theory of elastic aftereffect [zur theorie der elastischen nachwirkung]. Wien Akad Sitzungsber 70:275–306

    Google Scholar 

  • Boltzmann L (1876) Theory of elastic aftereffect [zur theorie der elastischen nachwirkung]. Annalen der Physik und Chemie: Erganzungsband 7:624–654

    Google Scholar 

  • Boltzmann L (2012a) Theory of elastic aftereffect [zur theorie der elastischen nachwirkung]. In: Hasenohrl F (ed) Wissenschaftliche Abhandlungen, vol 1, pp 616–644. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Boltzmann L (2012b) Theory of elastic aftereffect [zur theorie der elastischen nachwirkung]. In: Hasenohrl F (ed) Wissenschaftliche Abhandlungen, vol 2, pp 318–320. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bozler E (1954) Relaxation in extracted muscle fibers. J Gen Physiol 38:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputo M (1967) Linear models of dissipation whose q is almost frequency independent-ii. Geophys J Inter 13(5):529–539

    Article  Google Scholar 

  • Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 1(2):1–13

    Google Scholar 

  • Chen W (2006) Time–space fabric underlying anomalous diffusion. Chaos, Solitons & Fractals 28(4)(4):923–929

    Google Scholar 

  • Chen W, Sun H, Zhang X, Korošak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput & Math Appl 59(5):1754–1758

    Article  Google Scholar 

  • Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math Proc Camb Philos Soc 43(1):50–67. Cambridge University Press

    Google Scholar 

  • Davis TN (1992) What’s new with calcium? Cell 71(4):557–564

    Article  PubMed  Google Scholar 

  • Erdelyi A, Magnus W, Oberhettinger F, Tricomi FG (1955) Higher transcendental functions, vol 3. McGraw - Hill, New York, Toronto and London

    Google Scholar 

  • Feliu-Talegon D, San-Millan A, Feliu-Batlle V (2016) Fractional-order integral resonant control of collocated smart structures. Control Eng Pract

    Google Scholar 

  • Granger CWJ (1964) The typical spectral shape of an economic variable. Technical Report No. 11; Department of Statistics, Stanford University, Stanford, CA, USA, p 21

    Google Scholar 

  • Granger CWJ (1966) The typical spectral shape of an economic variable. Econometrica 34:150–161

    Article  Google Scholar 

  • Granger CWJ, Joyeux R (1980) An introduction to long memory time series models and fractional differencing. J Time Ser Anal 1:15–39

    Article  Google Scholar 

  • Greenenko AA, Chechkin AV, Shul’Ga NF (2004) Anomalous diffusion and lévy flights in channeling. Phys Lett A 324(1):82–85

    Article  CAS  Google Scholar 

  • Grunwald AK (1867) Uber begrenzte derivationen and deren anwendung. Z Angew Math Und Phys 12:441–480

    Google Scholar 

  • Hadmard J (1892) Essai sur l’etude des functions donnees par leur developpement de taylor. J Math Pures et Appl Ser 4:101–186

    Google Scholar 

  • Hardy GH, Littlewood JE (1925) Some properties of fractional integrals. Proc London Math Soc Ser 2(24):37–41

    Google Scholar 

  • Herrmann R (2011) Fractional calculus: an introduction for physicist. World Scientific, New Jersey

    Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. World scientific, Germany

    Book  Google Scholar 

  • Holmgren HJ (1865) Om differenlialkalkylen med indices of hoad nature som helst. Kongl Svenska Vetenskaps Akad Handl Stockholm 5(1):1–83

    Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A Contain Papers Math Phys Character 115(772):700–721

    Google Scholar 

  • Kilbas A, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier, Amsterdam

    Book  Google Scholar 

  • Kiryakova V (1994) Generalized fractional calculus and applications. Longman and J. Wiley, New York, USA

    Google Scholar 

  • Kriyakova VS (1986) On operators of fractional integration invovling meijer’s g-function. C R Acad Bulg Sci 39(10):25–28

    Google Scholar 

  • Kurg A (1890) Theorie der derivationen. Akad Wiss Wien, Denkenschriften Math-Natur Kl 57:151–226

    Google Scholar 

  • Laplace PS (1820) Analytic theory of probabilities. Courcier, Paris

    Google Scholar 

  • Laurent H (1884) On the calculation of the d ’e riv é es ‘a arbitrary indices. Nouvelles Annales de Math e Matiques: J Cand Polytech Norm Sch 3:240–252

    Google Scholar 

  • Letnikov AV (1868) Theory of differentiation with an arbtraly indicator. Matem Sbornik 3:1–68

    Google Scholar 

  • Li Y, Yu SL (2006) Fractional order difference filters and edge detection. Opto-Electr Eng 33(19):71–74

    Google Scholar 

  • Liao S (1997) Homotopy analysis method: a new analytical technique for nonlinear problems. Commun Nonlinear Sci Numer Simul 2(2):95–100

    Article  Google Scholar 

  • Liao S (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147(2):499–513

    Article  Google Scholar 

  • Liouville J (1832) Memoire sur le calcul des differentielles a indices quelcon- ques. Ibid 71–162

    Google Scholar 

  • Liu W, Hillen T, Freedman H (2007) A mathematical model for m-phase specific chemotherapy including the \( g_0 \)-phase and immunoresponse. Math Biosci & Eng 4(2):239

    Article  CAS  Google Scholar 

  • Logan JD (2013) Applied mathematics. Wiley, New Jersey

    Google Scholar 

  • Logan JD (2015) A first course in differential equations, 3rd edn. Springer, Switzerland

    Book  Google Scholar 

  • Losada J, Nieto JJ (2015) Properties of a new fractional derivative without singular kernel. Progr Fract Differ Appl 1(2):87–92

    Google Scholar 

  • Mainardi F (1997) Fractional calculus. Fractals and fractional calculus in continuum mechanics. Springer, Vienna, pp 291–348

    Chapter  Google Scholar 

  • Mainardi F (2012) An historical perspective on fractional calculus in linear viscoelasticity. Fract Calc Appl Anal 15:712–717

    Article  Google Scholar 

  • Marchaud A (1927) Sur les derivees et sur les differences des functions de variables reelles. J Math Pures et Appl 6(4):337–425

    Google Scholar 

  • Marinangeli L, Alijani F, Hossein Nia SH (2018) Fractional-order positive position feedback compensator for active vibration control of a smart composite plate. J Sound Vib 412:1–16

    Google Scholar 

  • Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77

    Article  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, New York

    Google Scholar 

  • Mittag-Leffler GM (1903) On the new function \(e_{a}(x)\). CR Acad Sci Paris 137(2):554–558

    Google Scholar 

  • Mohamed MS, Al-Malki F, Al-Humyani M (2014) Homotopy analysis transform method for timespace fractional gas dynamics equation. Gen Math Notes 24(1):1–16

    Google Scholar 

  • Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier

    Google Scholar 

  • Pakdemirli M, Aksoy Y, Boyacı H (2011) A new perturbation-iteration approach for first order differential equations. Math Comput Appl 16(4):890–899

    Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, San Diego

    Google Scholar 

  • Pu YF (2007) Fractional differential analysis for texture of digital image. J Alg Comput Technol 1(03):357–380

    Article  Google Scholar 

  • Riesz M (1949) L’integrale de riemann-liouville et le probleme de cauchy. Acta Math 81:1–223

    Google Scholar 

  • Rubin BS (1972) On the spaces of fractional integrals on straight line contour. Izr Akad Nauk Armyan SSR Ser Mat 7(5):373–386

    Google Scholar 

  • Samko SG (1987) Fractional integrals and derivatives, theory and applications. Gordon and Breach Science Publishers, Switzerland, USA

    Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives theory and applications. Gordon and Breach, New York, NY, USA

    Google Scholar 

  • Tomovski Z (2011) Generalised cauchy type problems for nonlinear fractional differential equation with composite fractional derivative operator. Nonlinear Anal- Theor 75:3364–3384

    Article  Google Scholar 

  • Volterra V (1928) On the mathematical theory of hereditary phenomena. J Mathematiques Pures et Appliquees 7:249–298

    Google Scholar 

  • Volterra V (1930) Theory of functionals and of integral and integro-differential equations. Blackie and Son Ltd., London, UK; Glasgow, Scotland, p 226

    Google Scholar 

  • Weyl H (1917) Bemerkungen zum begriff des differential quotienten gebrochener. ordung. Vir Natur Ges Zurich 62:296–302

    Google Scholar 

  • Wiesner TF, Berk BC, Nerem RM (1996) A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. Amer J Physiol-Cell Physiol 270(5):C1556–C1569

    Article  CAS  Google Scholar 

  • Wiman A (1905) Über den fundamentalsatz in der theorie der funktionen ea (z). Acta Math 29(1):191–201

    Article  Google Scholar 

  • Zhang J, Wei Z (2011) A class of fractional-order multiscale variational models and alternating projection algorithm for image denoising. Appl Math Model 35:2516–2528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, R., Purohit, S.D., Kritika (2024). Introduction to Fractional Calculus and Modelling. In: Modeling Calcium Signaling. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Singapore. https://doi.org/10.1007/978-981-97-1651-7_1

Download citation

Publish with us

Policies and ethics

Navigation