Genetic Engineering and Gene Editing for Targeted Trait Modifications

  • Chapter
  • First Online:
Plant Functional Traits for Improving Productivity

Abstract

In the twenty-first century, the scientific community faces the challenge of ensuring food security for an increasing population while tackling climate change simultaneously. In this direction, the manipulation of functional traits has captured the interest of scientists worldwide. The arrival of genetic engineering and gene editing has revolutionized the research aiming to improve plant functional traits to enhance productivity with better precision and speed. Genetic engineering techniques like gene silencing and transgenesis alleviate the risks and raise the adaptability of the plant. Trait modifications benefit from plant architecture, flower characters, disease and stress tolerance, and herbicide resistance. This further aids in fulfilling consumer requirements and meeting global food deficiency. Newly emerged plant breeding technologies like clustered regularly interspaced short palindromic repeats, zinc finger nucleases, and transcription activator-like effector nucleases have facilitated the advancement of enhanced genetic modification in plants for trait improvement. Continuous efforts and more research in this direction can ameliorate crop losses occurring due to a wide range of factors and aid in successfully fulfilling world hunger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah NA, Elsharawy H, Abulela HA, Thilmony R, Abdelhadi AA, Elarabi NI (2022) Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops Food. https://doi.org/10.1080/21645698.2022.2120313

  • Alfatih A, Wu J, Jan SU, Zhang ZS, **a JQ, **ang CB (2020) Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ 43(11):2743–2754

    Article  CAS  PubMed  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW (2018) High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 (Bethesda) 8(5):1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Bett B, Gollasch S, Moore A, James W, Armstrong J, Walsh T et al (2017) Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip 3Ba protein are protected against the Maruca pod borer (Marucavitrata). Plant Cell Tissue Organ Culture 131:335–345

    Article  CAS  Google Scholar 

  • Bhattacharyya N, Anand U, Kumar R, Ghorai M, Aftab T, Jha NK et al (2023) Phytoremediation and sequestration of soil metals using the CRISPR/Cas9 technology to modify plants: a review. Environ Chem Lett 21(1):429–445

    Article  CAS  Google Scholar 

  • Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol J 10(8):913–924

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lin Y (2013) Promise and issues of genetically modified crops. Curr Opin Plant Biol 16(2):255–260

    Article  PubMed  Google Scholar 

  • Cheng H, Hao M, Ding B, Mei D, Wang W, Wang H et al (2021) Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system. Plant Biotechnol J 19(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14(1):169–176

    Article  CAS  PubMed  Google Scholar 

  • Das T, Anand U, Pal T, Mandal S, Kumar M, Radha et al (2023) Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: an overview of challenges and approaches. Biotechnol Bioeng 120(5):1215–1228

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Hu Z, Qin Q, Dong F, Huang L, Long J, Chen P, Lu C, Pan M (2019) CRISPR/Cas9‐mediated disruption of the immediate early‐0 and 2 as a therapeutic approach to Bombyx mori nucleopolyhedrovirus in transgenic silkworm. Insect Mol Bio 28(1):112–122

    Google Scholar 

  • Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184(6):1621–1635

    Article  CAS  PubMed  Google Scholar 

  • Gosavi G, Ren B, Li X, Zhou X, Spetz C, Zhou H (2022) A new era in herbicide-tolerant crops development by targeted genome editing. ACS Agric Sci Technol 2(2):184–191

    Article  CAS  Google Scholar 

  • Gowda A, Rydel TJ, Wollacott AM, Brown RS, Akbar W, Clark TL, Flasinski S, Nageotte JR, Read AC, Shi X, Werner BJ (2016) A transgenic approach for controlling Lygus in cotton. Nat Comm 7(1):12213

    Google Scholar 

  • Grazziotin MA, Cabral GB, Ibrahim AB, Machado RB, Aragão FJ (2020) Expression of the Arcelin 1 gene from Phaseolus vulgaris L. in cowpea seeds (Vigna unguiculata L.) confers bruchid resistance. Ann App Bio 176(3):268–274

    Google Scholar 

  • He X, Luo X, Wang T, Liu S, Zhang X, Zhu L (2020) GhHB12 negatively regulates abiotic stress tolerance in Arabidopsis and cotton. Environ Exp Bot 176:104087

    Article  CAS  Google Scholar 

  • Heap I, Duke SO (2018) Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci 74(5):1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Iqbal Z, Iqbal MS, Ahmad A, Memon AG, Ansari MI (2020) New prospects on the horizon: genome editing to engineer plants for desirable traits. Curr Plant Biol 24:100171

    Article  Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA brief no. 53. ISAAA, Ithaca

    Google Scholar 

  • ISAAA Database (2019) GM approval database. ISAAA, Ithaca

    Google Scholar 

  • Jadhav MS, Rathnasamy SA, Natarajan B, Duraialagaraja S, Varatharajalu U (2020) Study of expression of indigenous Bt cry2AX1 gene in T 3 progeny of cotton and its efficacy against Helicoverpa armigera (Hubner). Braz Arch Biol Technol 63:e20180428

    Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jiang YY, Chai YP, Lu MH, Han XL, Lin Q, Zhang Y et al (2020) Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol 21:1–10

    Article  Google Scholar 

  • ** S, Fei H, Zhu Z, Luo Y, Liu J, Gao S et al (2020) Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol Cell 79(5):728–740

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Alok A, Shivani, Kumar P, Kaur N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey AK, Tiwari S (2020) CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for beta-carotene biosynthesis in banana fruit. Metab Eng 59:76–86. https://doi.org/10.1016/j.ymben.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Sharma S, Hasanuzzaman M, Pati PK (2022) Genome editing: a promising approach for achieving abiotic stress tolerance in plants. Int J Genomics 2022:5547231

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazemi-Shahandashti SS, Maali-Amiri R (2018) Global insights of protein responses to cold stress in plants: signaling, defence, and degradation. J Plant Physiol 226:123–135

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Choi M, Bae SJ, Kim JS (2021) The functional association of ACQOS/VICTR with salt stress resistance in Arabidopsis thaliana was confirmed by CRISPR-mediated mutagenesis. Int J Mol Sci 22(21):11389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku HK, Ha SH (2020) Improving nutritional and functional quality by genome editing of crops: status and perspectives. Front Plant Sci 11:577313

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S (2020) Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int J Food Sci Agric 4:367–378

    Google Scholar 

  • Kumar N, Kumar N, Shukla A, Shankhdhar SC, Shankhdhar D (2015) Impact of terminal heat stress on pollen viability and yield attributes of rice (Oryza sativa L.). Cereal Res Commun 43(4):616–626

    Google Scholar 

  • Kumar N, Shankhdhar SC, Shankhdhar D (2016) Impact of elevated temperature on antioxidant activity and membrane stability in different genotypes of rice (Oryza sativa L.). Indian J Plant Physiol 21(1):37–43

    Google Scholar 

  • Kumar N, Suyal DC, Sharma IP, Verma A, Singh H (2017) Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: a proteomic approach to understand heat stress response. 3 Biotech 7:205

    Google Scholar 

  • Kumar N, Jeena N, Singh H (2019) Elevated temperature modulates rice pollen structure: a study from foothill Himalayan agro-ecosystem in India. 3 Biotech 9:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S (2020) Genetically modified crops: current status and future prospects. Planta 251:1–27

    Article  Google Scholar 

  • Kumar A, Dwivedi GK, Tewari S, Paul J, Anand R, Kumar N, Kumar P, Singh H, Kaushal R (2020a) Carbon mineralization and inorganic nitrogen pools under Terminalia chebula Retz.-based agroforestry system in Himalayan foothills, India. For Sci 66(5):634–643

    Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2020b) Adaptation and mitigation potential of roadside trees with bio-extraction of heavy metals under vehicular emissions and their impact on physiological traits during seasonal regimes. Urban For Urban Green 58:126900

    Article  Google Scholar 

  • Kumar A, Dwivedi GK, Tewari S, Paul J, Sah VK, Singh H, Kumar P, Kumar N, Kaushal R (2020c) Soil organic carbon pools under Terminalia chebula Retz. based agroforestry system in Himalayan foothills, India. Curr Sci 118(7):1098–1103

    Article  CAS  Google Scholar 

  • Kumar N, Jeena N, Kumar A, Khairakpam R, Singh H (2021) Comparative response of rice cultivars to elevated air temperature in Bhabar region of Indian Himalaya: status on yield attributes. Heliyon 7:e07474

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kumar P, Singh H, Bisht S, Kumar N (2021a) Relationship of physiological plant functional traits with soil carbon stock in temperate forest of Garhwal Himalaya. Curr Sci 120(8):1368–1373

    Article  CAS  Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2021b) Modulation of plant functional traits under essential plant nutrients during seasonal regime in natural forests of Garhwal Himalayas. Plant Soil 465:197–212

    Article  CAS  Google Scholar 

  • Kumar A, Tewari S, Singh H, Kumar P, Kumar N, Bisht S, Kushwaha S, Tamta N, Kaushal R (2021c) Biomass accumulation and carbon stocks in different agroforestry system prevalent in Himalayan foothills, India. Curr Sci 120(6):1083–1088

    Article  CAS  Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2021d) Impact of plant functional traits on near saturated hydraulic conductivity of soil under different forests of Kempty watershed in Garhwal Himalaya. Indian J Soil Conserv 49(1):38–44

    Google Scholar 

  • Lanigan TM, Kopera HC, Saunders TL (2020) Principles of genetic engineering. Genes 11(3):291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Liu B, Chen CY, Yang B (2016) TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J Genet Genomics 43(5):297–305

    Article  CAS  PubMed  Google Scholar 

  • Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR (2018a) Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol 177(4):1425–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zong Y, Wang Y, ** S, Zhang D, Song Q et al (2018b) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:1–9

    Article  CAS  Google Scholar 

  • Li H, Li J, Chen J, Yan L, **a L (2020) Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol Plant 13(5):671–674

    Article  CAS  PubMed  Google Scholar 

  • Little NS, Catchot AL, Allen KC, Gore J, Musser FR, Cook DR, Luttrell RG (2017) Supplemental control with diamides for Heliothines1 in Bt cotton. Southwestern Entomol 42(1):15–26

    Google Scholar 

  • Liu E, Zeng S, Zhu S, Liu Y, Wu G, Zhao K, Liu X, Liu Q, Dong Z, Dang X, **e H, Li D, Hu X, Hong D (2019) Favorable alleles of grain-filling rate1 increase the grain-filling rate and yield of rice. Plant Physiol 181:1207–1222. https://doi.org/10.1104/pp.19.00413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louwaars NP (2018) Plant breeding and diversity: a troubled relationship? Euphytica 214(7):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Wu B, Wang J, Zhu W, Nie H, Qian J, Huang W, Fang Z (2018) Blocking amino acid transporter Os AAP 3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J 16(10):1710–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao C, **ao L, Hua K, Zou C, Zhao Y, Bressan R A, Zhu J K (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. PNAS 115(23):6058–6063

    Google Scholar 

  • Murray JM, Carr AM (2018) Integrating DNA damage repair with the cell cycle. Curr Opin Cell Biol 52:120–125

    Article  CAS  PubMed  Google Scholar 

  • Nagamine A, Ezura H (2022) Genome editing for improving crop nutrition. Front Genome Ed 4:850104

    Article  PubMed  PubMed Central  Google Scholar 

  • Novak S (2019) Plant biotechnology applications of zinc finger technology. Methods Mol Biol 1864:295–310

    Article  CAS  PubMed  Google Scholar 

  • Nuñez-Muñoz L, Vargas-Hernández B, Hinojosa-Moya J, Ruiz-Medrano R, Xoconostle-Cázares B (2021) Plant drought tolerance provided through genome editing of the trehalase gene. Plant Signal Behav 16(4):1877005

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul S, Das S (2021) Natural insecticidal proteins, the promising bio-control compounds for future crop protection. Nucleus 64:7–20

    Article  CAS  Google Scholar 

  • Qin D, Liu XY, Miceli C, Zhang Q, Wang PW (2019) Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela. BMC Biotechnol 19:1–12

    Google Scholar 

  • Qiu L, Sun Y, Jiang Z, Yang P, Liu H, Zhou H, Wang X, Zhang W, Lin Y, Ma W (2019) The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. Insect Mol Biol 28(4):520–527

    Google Scholar 

  • Rahman MU, Zulfiqar S, Raza MA, Ahmad N, Zhang B (2022) Engineering abiotic stress tolerance in crop plants through CRISPR genome editing. Cells 11(22):3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Cui Y, Hu H, Xu Q, Rao Y, Yu X, Zhang Y, Wang Y, Peng Y, Zeng D, Hu J (2019) AH 2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J 100(4):813–824

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Nasir IA, Bhatti MU, Adeyinka OS, Toufiq N, Yousaf I, Tabassum B (2020) Resistance to Chilo infuscatellus (Lepidoptera: Pyraloidea) in transgenic lines of sugarcane expressing Bacillus thuringiensis derived Vip3A protein. Mol Biol Rep 47:2649–2658

    Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910

    Article  PubMed  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant Biotechnol J 13(6):791–800

    Article  CAS  PubMed  Google Scholar 

  • Shen WJ, Chen GX, Xu JG, Jiang Y, Liu L, Gao ZP, Ma J, Chen X, Chen TH, Lv CF (2015) Overexpression of maize phospho enol pyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Photosynthetica 53(3):436–446

    Article  CAS  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441

    Article  CAS  PubMed  Google Scholar 

  • Shukla M, Al-Busaidi KT, Trivedi M, Tiwari RK (2018) Status of research, regulations and challenges for genetically modified crops in India. GM Crops Food 9(4):173–188

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh HP, Singh BP (2014) Genetic engineering of field, industrial and pharmaceutical crops. Am J Plant Sci 5(26):3974

    Article  CAS  Google Scholar 

  • Singh H, Verma A (2013a) Physiological responses of rice cultivars to various nitrogen levels. Int J Agric Environ Biotechnol 6(3):383–388

    Article  Google Scholar 

  • Singh H, Verma A (2013b) Characterization and screening of high nitrogen efficient rice genotype to curtail environmental pollution. Int J Agric Environ Biotechnol 6(1):23–30

    Google Scholar 

  • Singh H, Verma A, Shukla A (2010a) Comparative study of yield and yield components of hybrid and inbred genotypes of rice (Oryza Sativa L.). Int J Agric Environ Biotechnol 3:355–360

    Google Scholar 

  • Singh H, Verma A, Krishnamoorthy Mand Shukla A (2010b) Consequence of diverse nitrogen levels on leaf pigments in five rice genotypes under field emergent circumstance. Int J Bioresour Stress Manage 1:189–193

    Google Scholar 

  • Singh H, Verma A, Rai SK (2013a) Biochemical evaluation of different rice genotypes grown at various nitrogen levels using SDS-PAGE. Curr Adv Agric Sci 5(1):144–146

    Google Scholar 

  • Singh H, Verma A, Shukla A (2013b) Guttation fluid as a physiological marker for selection of nitrogen efficient rice (Oryza sativa L.) genotypes. Afr J Biotechnol 12(44):6276–6281

    Google Scholar 

  • Singh H, Verma A, Ansari MW, Shukla A (2014) Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions. Plant Signal Behav 9:e29015. https://doi.org/10.4161/psb.29015

  • Singh S, Kumar NR, Maniraj R, Lakshmikanth R, Rao KYS, Muralimohan N, Arulprakash T, Karthik K, Shashibhushan NB, Vinutha T, Pattanayak D (2018) Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera. Sci Rep 8(1):8820

    Google Scholar 

  • Singh H, Yadav M, Kumar N, Kumar A, Kumar M (2020) Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: a case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS One 15(1):e0227380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh H, Sharma SK, Nautiyal R (2021) Seasonal variation in biochemical responses of bamboo clones in the sub-tropical climate of Indian Himalayan foothills. Heliyon 7(4):e06859. https://doi.org/10.1016/j.heliyon.2021.e06859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H (2024) Exploring adaptive modulation in plant functional traits and its impact on the productivity of Acacia auriculiformis under CO2-enriched environment. Ind Crop Prod 210. https://doi.org/10.1016/j.indcrop.2024.118186

  • Singh M, Singh H, Kumar A, Kumar M, Barthwal S, Thakur A (2024) Soil nitrogen availability determines the CO2 fertilization effect on tree species (Neolamarckia cadamba): growth and physiological evidence. Environ Sustain. https://doi.org/10.1007/s42398-023-00300-w

  • Soliman HI, Abo-El-Hasan FM, El-Seedy AS, Mabrouk YM (2021) Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum mill.) using a synthetic cry1ab gene for enhanced resistance against Tutaabsoluta (Meyrick). J Microbiol Biotechnol Food Sci 2021:67–74

    Google Scholar 

  • Tiwari M, Kumar Trivedi P, Pandey A (2021) Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food Energy Secur 10(1):e258

    Article  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran MT, Doan DTH, Kim J, Song YJ, Sung YW, Das S et al (2021) CRISPR/Cas9-based precise excision of SlHyPRP1 domain (s) to obtain salt stress-tolerant tomato. Plant Cell Rep 40:999–1011

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Kesiraju K, Saakre M, Rathinam M, Raman V, Pattanayak D, Sreevathsa R (2020) Genome editing for resistance to insect pests: an emerging tool for crop improvement. ACS Omega 5(33):20674–20683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usman B, Nawaz G, Zhao N, Liu Y, Li R (2020) Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants 9(6):788. https://doi.org/10.3390/plants9060788

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  Google Scholar 

  • Wang J, Wu B, Lu K, Wei Q, Qian J, Chen Y, Fang Z (2019) The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiol 180(2):1031–1045

    Google Scholar 

  • Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Song W, Zheng X, Chen C, Zhang Y (2020) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21(7):2288

    Google Scholar 

  • Wang H, Li Y, Chern M, Zhu Y, Zhang LL, Lu JH et al (2021a) Suppression of rice miR168 improves yield, flowering time and immunity. Nat Plants 7(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Tian B, Pan Q, Chen Y, He F, Bai G et al (2021b) Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases. Plant Biotechnol J 19(12):2428–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liao S, Li M, Wei J, Zhu B, Gu L, Li L, Du X (2022) TmNAS3 from Triticum monococum directly regulated by TmbHLH47 increases Fe content of wheat grain. Gene 811:146096

    Google Scholar 

  • Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L et al (2020) Roles of the Brassica napus DELLA protein BnaA6. RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10. ABF2. Front Plant Sci 11:577

    Google Scholar 

  • Xu R, Li J, Liu X, Shan T, Qin R, Wei P (2020) Development of plant prime-editing systems for precise genome editing. Plant Commun 1(3):100043

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan S, Zhu J, Zhu W, Li Z, Shelton AM, Luo J, Cui J, Zhang Q, Liu X (2015) Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Sci Rep 5(1):15917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan D, Ren B, Liu L, Yan F, Li S, Wang G, Sun W, Zhou X, Zhou H (2021) High-efficiency and multiplex adenine base editing in plants using new TadA variants. Mol Plant 14(5):722–731

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Yang X, Rao Y (2022) Genetic engineering technologies for improving crop yield and quality. Agronomy 12(4):759

    Article  CAS  Google Scholar 

  • Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q, Asmutola P (2017) CRISPR/Cas9- induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7:11874. https://doi.org/10.1038/s41598-017-12262-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuste-Lisbona FJ, Fernandez-Lozano A, Pineda B, Bretones S, Ortiz-Atienza A, Garcia-Sogo B, Muller NA, Angosto T, Capel J, Moreno V, Jimenez-Gomez JM, Lozano R (2020) ENO regulates tomato fruit size through the floral meristem development network. Proc Natl Acad Sci U S A 117:8187–8195. https://doi.org/10.1073/pnas.1913688117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Wen J, Zhao W, Wang Q, Huang W (2020) Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci 10:1663

    Google Scholar 

  • Zhang J, Bandyopadhyay A, Sellappan K, Wang G, **e HA, Datta K, Datta SK (2010) Characterization of a C4 maize pyruvate orthophosphate dikinase expressed in C3 transgenic rice plants. Afr J Biotechnol 9(2):234–242

    CAS  Google Scholar 

  • Zhang J, Zhang H, Botella JR, Zhu JK (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60(5):369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Mogel KJHV, Lor VS, Hirsch CN, De Vries B, Kaeppler HF et al (2019) Maize sugary enhancer1 (se1) is a gene affecting endosperm starch metabolism. Proc Natl Acad Sci 116(41):20776–20785

    Google Scholar 

  • Zhong Y, Ahmed S, Deng G, Fan W, Zhang P, Wang H (2019) Improved insect resistance against Spodoptera litura in transgenic sweetpotato by overexpressing Cry1Aa toxin. Plant Cell Rep 38:1439–1448

    Google Scholar 

  • Zhu X, Rong W, Wang K, Guo W, Zhou M, Wu J et al (2022) Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnol J 20(4):777–793

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruhil, T., Singh, H., Barthwal, S. (2024). Genetic Engineering and Gene Editing for Targeted Trait Modifications. In: Kumar, N., Singh, H. (eds) Plant Functional Traits for Improving Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-97-1510-7_12

Download citation

Publish with us

Policies and ethics

Navigation