Inorganic Perovskite Electronic Devices

  • Chapter
  • First Online:
Inorganic Perovskite Materials and Devices

Abstract

In recent years, inorganic perovskite materials have gained wide applications in fields such as solar cells, lasers, and optoelectronic detectors due to their excellent optoelectronic properties. Additionally, inorganic perovskites offer advantages like simple fabrication processes, suitable bandgaps, ease of large-scale manufacturing, and integration into conventional electronic devices. They have also demonstrated considerable potential in electronic devices, such as memory devices, transistors, and sensors. Compared to traditional Si-based materials, inorganic perovskites can be prepared on flexible substrates, making them suitable for flexible and wearable electronic devices. Furthermore, inorganic perovskites, as compared to commonly used organic and oxide semiconductors, exhibit higher electron mobility, which can effectively enhance device performance. When compared to devices based on hybrid organic–inorganic perovskites, inorganic perovskite electronic devices are more competitive due to their high repeatability and stability. This chapter will primarily focus on the applications of inorganic perovskites in traditional electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Wang et al., Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated ag-nanoclusters. Nanoscale 5(10), 4490–4494 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. F. Zhuge et al., Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology 22(27), 275204 (2011)

    Article  PubMed  Google Scholar 

  3. M. Chuang et al., Negative differential resistance behavior and memory effect in laterally bridged zno nanorods grown by hydrothermal method. ACS Appl. Mater. Interfaces 6(8), 5432–5438 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Wu et al., Cap** CsPbBr3 with zno to improve performance and stability of perovskite memristors. Nano Res. 10(5), 1584–1594 (2017)

    Article  CAS  Google Scholar 

  5. D.J. Liu et al., Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces 9(7), 6171–6176 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Q. Lin et al., Transient resistive switching memory of CsPbBr3 thin films. Adv. Electron. Mater. 4(4), 1700596 (2018)

    Article  Google Scholar 

  7. H. Cai et al., Compact pure phase CsPbBr3 perovskite film with significantly improved stability for high-performance memory. Ceramics Int. 45(1), 1150–1155 (2019)

    Article  CAS  Google Scholar 

  8. W. Ruan et al., Morphological regulation of all-inorganic perovskites for multilevel resistive switching. J. Phys. Chem. Solids 127, 258–264 (2019)

    Article  CAS  Google Scholar 

  9. C. Zou et al., Vacuum-deposited inorganic perovskite memory arrays with long-term ambient stability. Physi. Status Solidi (RRL)-Rapid Res. Lett. 13(9), 1900182 (2019)

    Google Scholar 

  10. P. Cheng et al., One-step solution deposited all-inorganic perovskite CsPbBr3 film for flexible resistive switching memories. Appl. Phys. Lett. 115(22), 223505 (2019)

    Article  Google Scholar 

  11. Y. Zhu et al., Bromine vacancy redistribution and metallic-ion-migration-induced air-stable resistive switching behavior in all-inorganic perovskite CsPbBr3 film-based memory device. Adv. Electron. Mater. 6(2), 1900754 (2020)

    Article  CAS  Google Scholar 

  12. G. Abbas et al., A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films. Adv. Electron. Mater. 8(9), 2101412 (2022)

    Article  CAS  Google Scholar 

  13. Y. Wang et al., Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 30(28), 10 (2018)

    PubMed Central  Google Scholar 

  14. R. Chen et al., Transient resistive switching for nonvolatile memory based on water-soluble Cs4PbBr6 perovskite films. Phys. Status Solidi (RRL)-Rapid Res. Lett. 13(11), 1900397 (2019)

    Google Scholar 

  15. J.S. Han et al., Air-stable cesium lead iodide perovskite for ultra-low operating voltage resistive switching. Adv. Funct. Mater. 28(5), 10 (2018)

    PubMed Central  Google Scholar 

  16. S. Ge et al., Silver iodide induced resistive switching in CsPbI3 perovskite-based memory device. Adv. Mater. Interfaces 6(7), 1802071 (2019)

    Article  CAS  Google Scholar 

  17. J. Xu et al., Resistive switching in nonperovskite-phase CsPbI3 film-based memory devices. ACS Appl. Mater. Interfaces 12(8), 9409–9420 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. W. Ke et al., Resistance switching effect of memory device based on all-inorganic CsPbBrI2 perovskite. Materials 14(21) (2021). https://doi.org/10.3390/ma14216629

  19. H. An et al., Highly-stable memristive devices based on poly(methylmethacrylate): Cspbcl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 56, 41–45 (2018)

    Article  CAS  Google Scholar 

  20. J.S. Han et al., Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl. Mater. Interfaces 11(8), 8155–8163 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Hu et al., Ultrathin Cs3Bi2I9 nanosheets as an electronic memory material for flexible memristors. Adv. Mater. Interfaces 4(14), 1700131 (2017)

    Article  Google Scholar 

  22. C. Cuhadar et al., All-inorganic bismuth halide perovskite-like materials A3Bi2I9 and A3Bi1.8Na0.2I8.6 (a = Rb and Cs) for low-voltage switching resistive memory. ACS Appl. Mater. Interfaces 10(35), 29741–29749 (2018)

    Google Scholar 

  23. S. Ge et al., Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater. 30(25), 2002110 (2020)

    Article  CAS  Google Scholar 

  24. Z. **ong et al., Air-stable lead-free perovskite thin film based on CsBi3I10 and its application in resistive switching devices. ACS Appl. Mater. Interfaces 11(33), 30037–30044 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. J.-Y. Mao et al., Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 71, 104616 (2020)

    Article  CAS  Google Scholar 

  26. X. Cao et al., Air-stable, eco-friendly rrams based on lead-free Cs3Bi2Br9 perovskite quantum dots for high-performance information storage. Energy Environ. Mater. 6(5), e12419 (2023)

    Article  CAS  Google Scholar 

  27. X.F. Cheng et al., Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small 15(49), 8 (2019)

    Article  Google Scholar 

  28. S. Ge et al., Reset voltage-dependent multilevel resistive switching behavior in CsPb1-xBixI3 perovskite-based memory device. ACS Appl. Mater. Interfaces 10(29), 24620–24626 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. X. Zhang et al., Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. J. Phys. D Appl. Phys. 52(12), 125103 (2019)

    Article  Google Scholar 

  30. Z. Wang et al., Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 28(20), 3831–3892 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. C. Huo et al., Field-effect transistors based on van-der-waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets. J. Phys. Chem. Lett. 8(19), 4785–4792 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. J. Zhou et al., High-performance vertical field-effect transistors based on all-inorganic perovskite microplatelets. J. Mater. Chem. C 8(36), 12632–12637 (2020)

    Article  CAS  Google Scholar 

  33. Y. Zou et al., Anomalous ambipolar phototransistors based on all-inorganic CsPbBr3 perovskite at room temperature. Adv. Opt. Mater. 7(21), 1900676 (2019)

    Article  CAS  Google Scholar 

  34. L.-y Huang et al., Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88(16), 165203 (2013)

    Article  Google Scholar 

  35. R.E. Brandt et al., Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 5(2), 265–275 (2015)

    Article  CAS  Google Scholar 

  36. I. Chung et al., CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134(20), 8579–8587 (2012)

    Google Scholar 

  37. M.H. Kumar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. P. Xu et al., Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mat. 26(20), 6068–6072 (2014)

    Article  CAS  Google Scholar 

  39. B. Wu et al., Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells. Adv. Funct. Mater. 27(7), 1604818 (2017)

    Article  Google Scholar 

  40. A. Liu et al., High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5(2), 78–83 (2022)

    Article  CAS  Google Scholar 

  41. A. Liu et al., Antimony fluoride (SbF3): A potent hole suppressor for tin(ii)-halide perovskite devices. InfoMat 5(1), e12386 (2023)

    Article  CAS  Google Scholar 

  42. H. Zhu et al., Tin perovskite transistors and complementary circuits based on a-site cation engineering. Nat. Electron. 6(9), 650–657 (2023)

    Article  CAS  Google Scholar 

  43. Z. **ao et al., From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31(47), 1803792 (2019)

    Article  CAS  Google Scholar 

  44. J. ** et al., The fascinating properties of tin-alloyed halide perovskites. ACS Energy Lett. 6(5), 1803–1810 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Lee et al., Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 136(43), 15379–15385 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. B. Saparov et al., Thin-film deposition and characterization of a sn-deficient perovskite derivative Cs2SnI6. Chem. Mat. 28(7), 2315–2322 (2016)

    Article  CAS  Google Scholar 

  47. S. Ullah et al., Lead-free Cs2SnI6 perovskites for optoelectronic applications: recent developments and perspectives. Solar RRL 5(5), 2000830 (2021)

    Article  CAS  Google Scholar 

  48. A. Liu et al., Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors. Cell Rep. Phys. Sci. 3(4), 100812 (2022)

    Article  CAS  Google Scholar 

  49. Y. Chu et al., First-principles insights into the stability difference between abx3 halide perovskites and their A2BX6 variants. J. Phys. Chem. C 125(18), 9688–9694 (2021)

    Article  CAS  Google Scholar 

  50. J.C.-R. Ke et al., Ambient-air-stable inorganic Cs2SnI6 double perovskite thin films via aerosol-assisted chemical vapour deposition. J. Mater. Chem. A 6(24), 11205–11214 (2018)

    Article  CAS  Google Scholar 

  51. T.H. Chowdhury et al., Sn-based perovskite halides for electronic devices. Adv. Sci. 9(33), 2203749 (2022)

    Article  CAS  Google Scholar 

  52. S. Yang et al., Unlocking the potential of tin-based perovskites: properties, progress, and applications in new-era electronics. Small, 2304626 (2023)

    Google Scholar 

  53. A. Liu et al., High-performance metal halide perovskite transistors. Nat. Electron. 6(8), 559–571 (2023)

    Article  CAS  Google Scholar 

  54. K. Wang et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15(11), 1900010 (2019)

    Article  Google Scholar 

  55. Y. Wang et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 9 (2018)

    CAS  Google Scholar 

  56. Q.Y. Li et al., Light enhanced low-voltage nonvolatile memory based on all-inorganic perovskite quantum dots. Nanotechnology 30(37), 7 (2019)

    Article  Google Scholar 

  57. Z.L. Chen et al., Low-voltage all-inorganic perovskite quantum dot transistor memory. Appl. Phys. Lett. 112(21), 5 (2018)

    Article  Google Scholar 

  58. D.K. Kim et al., Cesium lead bromide quantum dot light-emitting field-effect transistors. ACS Appl. Mater. Interfaces 12(19), 21944–21951 (2020)

    Article  CAS  PubMed  Google Scholar 

  59. S.Z. Bisri et al., P–i–N homojunction in organic light-emitting transistors. Adv. Mater. 23(24), 2753–2758 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. Y. Son et al., Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process. Nat. Electron. 2(11), 540–548 (2019)

    Article  CAS  Google Scholar 

  61. P.C. Harikesh et al., Hybrid organic-inorganic halide perovskites for scaled-in neuromorphic devices. MRS Bull. 45(8), 641–648 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zang .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zang, Z., Zhao, S., Cai, W., Wang, H. (2024). Inorganic Perovskite Electronic Devices. In: Inorganic Perovskite Materials and Devices. Springer Series in Materials Science, vol 343. Springer, Singapore. https://doi.org/10.1007/978-981-97-1347-9_8

Download citation

Publish with us

Policies and ethics

Navigation