Optimization of Soil-Based Irrigation Scheduling Through the Integration of Machine Learning, Remote Sensing, and Soil Moisture Sensor Technology

  • Chapter
  • First Online:
IoT and AI in Agriculture

Abstract

This review book chapter delves into the transformative landscape of soil-based irrigation scheduling, with a focus on integrating cutting-edge technologies. The chapter begins by elucidating active and passive remote sensing techniques, emphasizing their role in estimating soil moisture levels. It further explores the benefits of soil moisture sensors in irrigation management, including improved water-use efficiency, water conservation, and data-driven decision-making. Subsequently, the narrative shifts to machine learning (ML) in irrigation scheduling, delineating fundamental ML concepts, and their applications in optimizing water usage and crop yield. The abstract highlights how ML supports real-time decision-making, risk mitigation, precision irrigation, and optimization under uncertainty. The discussion section engages in a comprehensive exploration of the implications, challenges, and opportunities associated with these technologies. In particular, it underscores the potential benefits and the challenges involved in utilizing soil moisture sensors, remote sensing data, and ML techniques in synergy. The section emphasizes the importance of data quality assurance, interdisciplinary collaboration, continuous learning, and technology investment in practical irrigation recommendations. The chapter concludes by underscoring the transformative potential of integrated irrigation management systems, offering a greener and more productive future for agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, A., Zhang, Y., & Nichols, S. (2011). Review and evaluation of remote sensing methods for soil-moisture estimation. SPIE Reviews, 2(1), 028001.

    Google Scholar 

  • Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P., & Anguela, T. P. (2008). Analysis of Terra SAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote sensing of environment, 112, 4370–4379.

    Article  Google Scholar 

  • Batlivala, P. P., & Ulaby, F. T. (1997). Feasibility of monitoring soil moisture using active microwave remote sensing,“University of Kansa Center for Research, Inc., Remote Sensing Laboratory Technical Report No. 264–12. University of Kansas Space Technology Center, Center for Research.

    Google Scholar 

  • Bellvert, J., Marsal, J., Mata, M., & Girona, J. (2012). Identifying irrigation zones across a 7.5-ha “pinot noir” vineyard based on the variability of vine water status and multispectral images. Irrigation Science, 30, 499–509. https://doi.org/10.1007/s00271-012-0380-y

    Article  Google Scholar 

  • Blasch, J., Van Der Kroon, B., Van Beukering, P., Munster, R., Fabiani, S., Nino, P., et al. (2022). Farmer preferences for adopting precision farming technologies: A case study from Italy. European Review of Agricultural Economics, 49, 33–81. https://doi.org/10.1093/erae/jbaa031

    Article  Google Scholar 

  • Blonquist, J. M., Jr., Jones, S. B., & Robinson, D. A. (2006). Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agricultural Water Management, 84(1–2), 153–165.

    Article  Google Scholar 

  • Cahn, M. D., & Johnson, L. F. (2017). New approaches to irrigation scheduling of vegetables. Horticulturae, 3, 28. https://doi.org/10.3390/horticulturae3020028

    Article  Google Scholar 

  • Cai, Y., Zheng, W., Zhang, X., Zhangzhong, L., & Xue, X. (2019). Research on soil moisture prediction model based on deep learning. PLoS One, 14(4), e0214508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S., Huang, J., & Hartemink, A. E. (2020). Establishing an empirical model for surface soil moisture retrieval at the US climate reference network using sentinel-1 backscatter and ancillary data. Remote Sensing, 12(8), 1242.

    Article  Google Scholar 

  • Chauhan, N. S., Miller, S., & Ardanuy, P. (2003). Spaceborne soil moisture estimation at high resolution: A microwave optical/IR synergistic method. International Journal of Remote Sensing, 24(22), 4599–4622.

    Article  Google Scholar 

  • Cheng, M., Jiao, X., Guo, W., Wang, S., & Sang, H. (2020). Temporal and spatial distribution characteristics of irrigation water requirement for main crops in the plain area of Hebei Province. Irrigation and Drainage, 9, 1051. https://doi.org/10.1002/ird.2489

    Article  Google Scholar 

  • Choudhury, B. J., Kerr, Y. H., Njoku, E. G., & Pampaloni, P. (1995). Passive microwave remote sensing of land-atmosphere interactions. VSP.

    Google Scholar 

  • Döll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research, 38(4), 8–10. https://doi.org/10.1029/2001WR000355

    Article  Google Scholar 

  • Domínguez-Niño, J. M., Oliver-Manera, J., Girona, J., & Casadesús, J. (2020). Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. Agricultural Water Management, 228, 105880.

    Article  Google Scholar 

  • Du, Y., Ulaby, F. T., & Dobson, M. C. (2000). Sensitivity to soil moisture by active and passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 38(1), 105–113.

    Article  Google Scholar 

  • Dubois, P. C., Zyl, J., & Engman, T. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915–926.

    Article  Google Scholar 

  • Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., Escadafal, R., Ezzahar, J., Hoedjes, J. C. B., Kharrou, M. H., Khabba, S., Mougenot, B., Olioso, A., Rodriguez, J.-C., & Simonneaux, V. (2006). Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agricultural Water Management, 97(1), 1–27.

    Article  Google Scholar 

  • Dunne, S. C., Entekhabi, D., & Njoku, E. G. (2007). Impact of multiresolution active and passive microwave measurements on soil moisture estimation using the ensemble Kalman smoother. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1016–1028.

    Article  Google Scholar 

  • Elkelish, A. A., Alhaithloul, H. A. S., Qari, S. H., Soliman, M. H., & Hasanuzzaman, M. (2020). Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environmental and Experimental Botany, 171, 103946.

    Article  CAS  Google Scholar 

  • El-Zeiny, A. M., & Effat, H. A. (2017). Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate. Egypt. Remote Sensing Applications: Society and Environment, 8, 266–277.

    Article  Google Scholar 

  • Er-Raki, S., Chehbouni, A., & Duchemin, B. (2010). Combining satellite remote sensing data with the FAO-56 dual approach for water use map** in irrigated wheat fields of a semi-arid region. Remote Sensing, 2(1), 375–387.

    Article  Google Scholar 

  • Fang, B., Lakshmi, V., Jackson, T., Bindlish, R., & Colliander, A. (2019). Passive/active microwave soil moisture change disaggregation using SMAPVEX12 data. Journal of Hydrology, 574, 1085–1098.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontanet, M., Fernàndez-garcia, D., & Ferrer, F. (2018). The value of satellite remote sensing soil moisture data and the DISPATCH algorithm in irrigation fields. Hydrology and Earth System Sciences, 22, 5889–5900.

    Article  Google Scholar 

  • Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., Escalona, J., & Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153, 9–19. https://doi.org/10.1016/j.agwat.2015.01.020

    Article  Google Scholar 

  • Galambošová, J., Rataj, V., Prokeinová, R., & Prešinská, J. (2014). Determining the management zones with hierarchic and non-hierarchic clustering methods. Research in Agricultural Engineering, 60, 60.

    Article  Google Scholar 

  • Garrido-Rubio, J., Gonzalez-Piqueras, J., Campos, I., Osann, A., Gonzalez-Gomez, L., & Calera, A. (2020). Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale. Agricultural Water Management, 238, 106236.

    Article  Google Scholar 

  • Ge, L., Hang, R., Liu, Y., & Liu, Q. (2018). Comparing the performance of neural network and deep convolutional neural network in estimating soil moisture from satellite observations. Remote Sensing, 10(9), 1327.

    Article  Google Scholar 

  • Gontia, N. K., & Tiwari, K. N. (2008). Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agricultural Water Management, 95(10), 1144–1152.

    Article  Google Scholar 

  • Gorthi, S., & Dou, H. (2011). Prediction models for the estimation of soil moisture content. In international design engineering technical conferences and computers and information in engineering conference (Vol. 54808, pp. 945–953). Design Engineering Division and Computers and Information in Engineering Division.

    Google Scholar 

  • Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C., & Daliakopoulos, I. N. (2021). Regionalizing root-zone soil moisture estimates from ESA CCI soil water index using machine learning and information on soil, vegetation, and climate. Water Resources Research, 57(5), e2020WR029249.

    Article  Google Scholar 

  • Gu, Z., Qi, Z., Burghate, R., Yuan, S., Jiao, X., & Xu, J. (2020). Irrigation scheduling approaches and applications: A review. Journal of Irrigation and Drainage Engineering, 146(6), 04020007.

    Article  Google Scholar 

  • Gupta, D., Gujre, N., Singha, S., & Mitra, S. (2022). Role of existing and emerging technologies in advancing climate-smart agriculture through modeling: A review. Ecological Informatics, 71, 101805.

    Article  Google Scholar 

  • Haas, J. (2010). Soil moisture modelling using TWI and satellite imagery in the Stockholm region. M.Sc dissertation, School of Architecture and the built environment. Royal Institute of Technology (KTH).

    Google Scholar 

  • He, Z. H., Li, M. N., Cai, Z. L., Zhao, R. S., Hong, T. T., Yang, Z., & Zhang, Z. (2021). Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato. Agricultural Water Management, 243, 106360.

    Article  Google Scholar 

  • Hedley, C., & Yule, I. (2009b). A method for spatial prediction of daily soil water status for precise irrigation scheduling. Agricultural Water Management, 96(12), 1737–1745. https://doi.org/10.1016/j.agwat.2009.07.009

    Article  Google Scholar 

  • Hedley, C. B., & Yule, I. J. (2009a). A method for spatial prediction of daily soil water status for precise irrigation scheduling. Agricultural Water Management, 96(12), 1737–1745.

    Article  Google Scholar 

  • Henggeler, J. C., Dukes, M. D., & Mecham, B. Q. (2011). Irrigation scheduling. In L. E. Stetson & B. Q. Mecham (Eds.), Irrigation (p. 495). Irrigation Association.

    Google Scholar 

  • Jabro, J. D., Stevens, W. B., Iversen, W. M., Allen, B. L., & Sainju, U. M. (2020). Irrigation scheduling based on wireless sensors output and soil-water characteristic curve in two soils. Sensors, 20(5), 1336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, T. J., Cosh, M. H., Bindlish, R., Starks, P. J., Bosch, D. D., Seyfried, M., & Du, J. (2010). Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4256–4272.

    Article  Google Scholar 

  • Jackson, T. J., Schmugge, J., & Engman, E. T. (1996). Remote sensing applications to hydrology: Soil moisture. Journal of Hydrological Sciences, 41(4), 517–529.

    Article  Google Scholar 

  • Jackson, T. J., & Schmugge, T. J. (1991). Vegetation effects on the of soils microwave emission. Remote Sensing of Environment, 36, 203–212.

    Article  Google Scholar 

  • Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., & Lucht, W. (2015a). Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrology and Earth System Sciences, 19(7), 3073–3091. https://doi.org/10.5194/hess-

    Article  Google Scholar 

  • Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., & Lucht, W. (2015b). Water.

    Google Scholar 

  • Jones, H. G. (2004). Irrigation scheduling: Advantages and pitfalls of plant-based methods. Journal of Experimental Botany, 55(407), 2427–2436.

    Article  CAS  PubMed  Google Scholar 

  • Lakhankar, T., Ghedira, H., Temimi, M., Azar, A. E., & Khanbilvardi, R. (2009b). Effect of land cover heterogeneity on soil moisture retrieval using activemicrowave remote sensing data. Journal of Remote Sensing, 1, 80–91.

    Article  Google Scholar 

  • Lakhankar, T., Ghedira, H., Temimi, M., Sengupta, M., Khanbilvardi, R., & Blake, R. (2009a). Nonparametric methods for soil moisture retrieval from satellite remote sensing data. Remote Sensing, 1(1), 3–21.

    Article  Google Scholar 

  • Lee, Y., Jung, C., & Kim, S. (2019). Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agricultural Water Management, 213(March), 580–593. https://doi.org/10.1016/j.agwat.2018.09.004

    Article  Google Scholar 

  • Liu, H., Whiting, M. L., Ustin, S. L., Zarco-Tejada, P. J., Huffman, T., & Zhang, X. (2018). Maximizing the relationship of yield to site-specific management zones with objectoriented segmentation of hyperspectral images. Precision Agriculture, 19, 348–364. https://doi.org/10.1007/s11119-017-9521-x

    Article  Google Scholar 

  • Maia, R. F., Lurbe, C. B., & Hornbuckle, J. (2022). Machine learning approach to estimate soil matric potential in the plant root zone based on remote sensing data. Frontiers in Plant Science, 13, 931491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Casasnovas, J. A., Agelet-Fernandez, J., Arno, J., & Ramos, M. C. (2012). Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality. Spanish Journal of Agricultural Research, 10, 326–337.

    Article  Google Scholar 

  • Merlin, O., Malbéteau, Y., Notfi, Y., Bacon, S., Khabba, S., & Jarlan, L. (2015). Performance metrics for soil moisture downscaling methods: Application to DISPATCH data in Central Morocco. Remote Sensing, 7(4), 3783–3807.

    Article  Google Scholar 

  • Migliaccio, K. W., Schaffer, B., Crane, J. H., & Davies, F. S. (2010). Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for papaya production in South Florida. Agricultural Water Management, 97(10), 1452–1460. https://doi.org/10.1016/j.agwat.2010.04.012

    Article  Google Scholar 

  • Mishra, V., Ellenburg, W. L., Griffin, R. E., Mecikalski, J. R., Cruise, J. F., Hain, C. R., & Anderson, M. C. (2018). An initial assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States. International Journal of Applied Earth Observation and Geoinformation, 68, 92–104.

    Article  Google Scholar 

  • Mitchell, T. M. (1997). Machine learning (Vol. 45, pp. 870–877). McGraw Hill.

    Google Scholar 

  • Neale, C. M. U., Jayanthi, H., & Wright, J. L. (2003). Crop and irrigation water management using high-resolution airborne remote sensing. In Proc. ICID workshop remote sensing of ET for large regions, CD-ROM. International Commission on Irrigation and Drainage.

    Google Scholar 

  • O’Neil, P. E. (1996). Use of active and passive microwave remote sensing for soil moisture estimation through corn. International Journal of Remote Sensing, 17(10), 1851–1865.

    Article  Google Scholar 

  • Ohana-levi, N., Bahat, I., Peeters, A., Shtein, A., Netzer, Y., & Ben-gal, A. (2019). Original papers a weighted multivariate spatial clustering model to determine irrigation management zones. Computers and Electronics in Agriculture, 162, 719–731. https://doi.org/10.1016/j.compag.2019.05.012

    Article  Google Scholar 

  • Olivera-Guerra, L., Merlin, O., & Er-Raki, S. (2020). Irrigation retrieval from Landsat optical/thermal data integrated into a crop water balance model: A case study over winter wheat fields in a semi-arid region. Remote Sensing of Environment, 239, 111627.

    Article  Google Scholar 

  • Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M., & Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany, 137, 335–339.

    Article  CAS  Google Scholar 

  • Owen, T. W., Carlson, T. N., & Gillies, R. R. (1998). An assessing soil moisture of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19(9), 1663–1681.

    Article  Google Scholar 

  • Pekel, E. (2020). Estimation of soil moisture using decision tree regression. Theoretical and Applied Climatology, 139(3), 1111–1119.

    Article  Google Scholar 

  • Peng, J., Loew, A., Merlin, O., & Verhoest, N. E. (2017). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 55(2), 341–366.

    Article  Google Scholar 

  • Peng, J., Tanguy, M., Robinson, E. L., Pinnington, E., Evans, J., Ellis, R., & Dadson, S. (2021). Estimation and evaluation of high-resolution soil moisture from merged model and earth observation data in the Great Britain. Remote Sensing of Environment, 264, 112610.

    Article  Google Scholar 

  • Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031

    Article  Google Scholar 

  • Peters, R. T., Desta, K. G., & Nelson, L. (2013). Practical use of soil moisture sensors and their data for irrigation scheduling. Washington State University.

    Google Scholar 

  • Petropoulos, G., Carlson, T. N., Wooster, M. J., & Islam, S. (2009). A review of T-s/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Progress in Physical Geography, 33, 224–250.

    Article  Google Scholar 

  • Pôças, I., Calera, A., Campos, I., & Cunha, M. (2020). Remote sensing for estimating and map** single and basal crop coefficients: A review on spectral vegetation indices approaches. Agricultural Water Management, 233, 106081. https://doi.org/10.1016/j.agwat.2020.106081

    Article  Google Scholar 

  • Prost, G. L. (2001). Remote sensing for geologists: A guide to image interpretation (2nd ed.). Gordon and Breach. (2001).

    Google Scholar 

  • Ragab, R., & Prudhomme, C. (2002). Sw—Soil and water: Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosystems Engineering, 81(1), 3–34.

    Article  Google Scholar 

  • Rani, A., Kumar, N., Kumar, J., & Sinha, N. K. (2022). Machine learning for soil moisture assessment. In Deep learning for sustainable agriculture (pp. 143–168). Academic Press.

    Chapter  Google Scholar 

  • Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., et al. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358–389.

    Article  Google Scholar 

  • Sabaghy, S., Walker, J. P., Renzullo, L. J., & Jackson, T. J. (2018). Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sensing of Environment, 209, 551–580.

    Article  Google Scholar 

  • Sánchez-Ruiz, S., Piles, M., Sánchez, N., Martínez-Fernández, J., Mercè, V.-l., Camps, & Adriano. (2014). Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. Journal of Hydrology, 516, 273–283.

    Article  Google Scholar 

  • Sandells, M. J., Ian, J., Davenport, & Gurney, R. J. (2008). Passive L-band microwave soil moisture retrieval error arising from topography in otherwise uniform scenes. Advances in Water Resources, 31, 1433–1443.

    Article  Google Scholar 

  • Santos, W. J. R., Silva, B. M., Oliveira, G. C., Volpato, M. M. L., Lima, J. M., Curi, N., & Marques, J. J. (2014). Soil moisture in the root zone and its relation to plant vigor assessed by remote sensing at management scale. Geoderma, 221, 91–95.

    Article  Google Scholar 

  • Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, S. H., & Luchiari, A. (2004). Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agronomy Journal, 96, 195–203.

    Article  Google Scholar 

  • Scudiero, E., Teatini, P., Manoli, G., Braga, F., Skaggs, T., & Morari, F. (2018). Workflow to establish time-specific zones in precision agriculture by spatiotemporal integration of plant and soil sensing data. Agronomy, 8, 253. https://doi.org/10.3390/agronomy8110253

    Article  Google Scholar 

  • Seyar, M. H., & Ahamed, T. (2023). Development of an IoT-based precision irrigation system for tomato production from indoor seedling germination to outdoor field production. Applied Sciences, 13(9), 5556.

    Article  CAS  Google Scholar 

  • Seyar, M. H., Kahandage, P. D., & Ahamed, T. (2023). An IoT-based precision irrigation system to optimize plant water requirements for indoor and outdoor farming systems. In IoT and AI in agriculture: Self-sufficiency in food production to achieve society 5.0 and SDG's globally (pp. 47–69). Springer Nature Singapore.

    Chapter  Google Scholar 

  • Simonneaux, V., Lepage, M., Helson, D., Metral, J., Thomas, S., Duchemin, B., Cherkaoui, M., Kharrou, H., Berjami, B., & Chehbouni, A. (2009). Estimation spatialisée de l’Evapotranspiration des cultures irriguées par télédétection. Application à la gestion de l’Irrigation dans la plaine du Haouz (Marrakech, Maroc). Sécheresse, 20(1), 123–130.

    Article  Google Scholar 

  • Singh, G., Das, N. N., Panda, R. K., Colliander, A., Jackson, T. J., Mohanty, B. P., Entekhabi, D., & Yueh, S. H. (2019). Validation of SMAP soil moisture products using ground-based observations for the paddy dominated tropical region of India. IEEE T. Geosci. Remote, 57, 8479–8491.

    Article  Google Scholar 

  • Soulis, K. X., Elmaloglou, S., & Dercas, N. (2015). Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agricultural Water Management, 148, 258–268.

    Article  Google Scholar 

  • Tagesson, T., Horion, S., Nieto, H., Fornies, V. Z., González, G. M., Bulgin, C. E., et al. (2018). Disaggregation of SMOS soil moisture over West Africa using the temperature and vegetation dryness index based on SEVIRI land surface parameters. Remote Sensing of Environment, 206, 424–441.

    Article  Google Scholar 

  • Thompson, R., M. Gallardo, L. Valdez, & M. Fernández. (2007). “Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors.” Agricultural Water Management 88 (1): 147–158. https://doi.org/10.1016/j.agwat.2006.10.007.

  • Tilman, D., & Clark, M. (2015). Food, agriculture & the environment: Can we feed the world & save the earth? Daedalus, 144(4), 8–23. https://doi.org/10.1162/DAED_a_00350

    Article  Google Scholar 

  • Torres-Rua, A. F., Ticlavilca, A. M., Bachour, R., & McKee, M. (2016). Estimation of surface soil moisture in irrigated lands by assimilation of landsat vegetation indices, surface energy balance products, and relevance vector machines. Water, 8(4), 167.

    Article  Google Scholar 

  • Tuller, M., Babaeian, E., Jones, S. B., Montzka, C., Vereecken, H., & Sadeghi, M. (2019). The paramount societal impact of soil moisture. Eos, 100, 1.

    Article  Google Scholar 

  • Tuller, M., Or, D., & Hillel, D. (2004). Retention of water in soil and the soil water characteristic curve. Encyclopedia of Soils in the Environment, 4, 278–289.

    Google Scholar 

  • Ulbay, F. T., Dobson, M. C., & Brunfeldt, D. R. (1983). Improvement of moisture estimation accuracy of vegetation-covered soil by combined active/passive microwave remote sensing. IEEE Transactions on Geoscience and Remote Sensing, GE-21(3), 300–307.

    Article  Google Scholar 

  • Walker, J. P., & Houser, P. R. (2001). A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. Journal of Geophysical Research, 106(D11), 11761–11774.

    Article  Google Scholar 

  • Walker, J. P., Troch, P. A., Mancini, M., Willgoose, G. R., & Kalma, J. D. (1997). Profile soil moisture estimation using the modified IEM. Geoscience and Remote Sensing, 3, 1263–1265.

    Google Scholar 

  • Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), 237–247.

    Article  Google Scholar 

  • Wang, L., Qu, J. J., & Hao, X. (2008). Forest fire detection using the normalized multiband drought index (NMDI) with satellite measurements. Agricultural and Forest Meteorology, 148(11), 1767–1776.

    Article  Google Scholar 

  • World Bank. (2022). Water in Agriculture.

    Google Scholar 

  • Zhan, X., Fang, L., Liu, J., Hain, C., Yin, J., Schull, M., et al. (2017). Fusing microwave and optical satellite observations for high resolution soil moisture data products. In Geoscience and remote sensing symposium (IGARSS), 2017 IEEE international (pp. 2519–2522). IEEE.

    Chapter  Google Scholar 

  • Zhao, W., Sánchez, N., Lu, H., & Li, A. (2018). A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. Journal of Hydrology, 563, 1009–1024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tofael Ahamed .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seyar, M.H., Ahamed, T. (2024). Optimization of Soil-Based Irrigation Scheduling Through the Integration of Machine Learning, Remote Sensing, and Soil Moisture Sensor Technology. In: IoT and AI in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-97-1263-2_18

Download citation

Publish with us

Policies and ethics

Navigation