Bacterial Photosynthesis for Nutrient Recovery and Value Addition

  • Chapter
  • First Online:
Microbial Photosynthesis

Abstract

Cyanobacteria have a high yield potential per-acre and are adaptable to environmental changes and can grow in different types of water resources. These organisms are extensively employed as model organisms in the field of research to investigate photosynthetic mechanisms and diverse responses to abiotic stress. Cyanobacteria play a significant role in providing a diverse range of primary and secondary metabolites that are utilized in many applications such as biofuels, biochemical synthesis, pharmaceuticals, biopesticides, therapeutics, coloring pigments, and food additives. Cyanobacteria also have the potential to sequester carbon dioxide and produce biohydrogen as an ideal energy carrier for future generations. Cyanobacteria produce PHAs directly from sunlight and CO2, with the dominant type being polyhydroxybutyrate. Cyanobacteria possess the ability to harness solar energy and produce electrical energy via light-dependent electrogenic activity in microbial fuel cells (MFCs). Cyanobacteria have gained recognition as a significant microorganism in the context of sustainable agricultural advancement, owing to their capacity to breakdown diverse contaminants and fulfill several functions within the soil ecosystem. Diazotrophes are a type of cyanobacteria that can generate eco-friendly biofertilizers, which are easily available and less costly than traditional chemical-based fertilizers. Cyanobacteria also play a critical role in maintaining and building soil fertility by making soil porous, improving water-holding capacity, controlling weeds growth, and increasing the availability of soil phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Saif SSAL, Abdel-Raouf N, El-Wazanani HA, Aref IA (2014) Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J Biol Sci 21(1):57–64

    Article  CAS  Google Scholar 

  • Balaji B, Xu J, Nwokafor A, Gupta R, Agarwal Y (2013) Sentinel: occupancy based HVAC actuation using existing WiFi infrastructure within commercial buildings. In: Proceedings of the 11th ACM conference on embedded networked sensor systems, pp 1–14

    Google Scholar 

  • Bhunia B, Uday USP, Oinam G, Mondal A, Bandyopadhyay TK, Tiwari ON (2018) Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr Polym 179:228–243

    Article  CAS  Google Scholar 

  • Bozieva AM et al (2023) New cyanobacterial strains for biohydrogen production. Int J Hydrog Energy 48:7569–7581

    Article  CAS  Google Scholar 

  • Carpine R, Du W, Olivieri G, Pollio A, Hellingwerf KJ, Marzocchella A, dos Santos FB (2017) Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction. Algal Res 25:117–127

    Article  Google Scholar 

  • Chittapun S, Jonjaroen V, Khumrangsee K, Charoenrat T (2020) C-phycocyanin extraction from two freshwater cyanobacteria by freeze thaw and pulsed electric field techniques to improve extraction efficiency and purity. Algal Res 46:101789

    Article  Google Scholar 

  • Drosg B et al (2015) Photo-autotrophic production of poly (hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29:145–156

    Article  CAS  Google Scholar 

  • Farrokh P et al (2019) Cyanobacteria as an eco-friendly resource for biofuel production: a critical review. Biotechnol Prog 35:e2835

    Article  CAS  Google Scholar 

  • Fu CC, Su CH, Hung TC, Hsieh CH, Suryani D, Wu WT (2009) Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresour Technol 100(18):4183–4186

    Article  CAS  Google Scholar 

  • Gao Q, Wang W, Zhao H, Lu X (2012) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels 5:1–9

    Article  Google Scholar 

  • Gomes Gradíssimo D et al (2020) Cyanobacterial polyhydroxyalkanoates: a sustainable alternative in circular economy. Molecules 25:4331

    Article  Google Scholar 

  • Ibraheem I (2007) Cyanobacteria as alternative biological conditioners for bioremediation of barren soil. Egypt J Phycol 8(1):99–117

    Article  Google Scholar 

  • Jha RK, Zi-Rong X (2004) Biomedical compounds from marine organisms. Marine drugs. 2(3):123–146

    Article  CAS  Google Scholar 

  • Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem 39(8):1007–1012

    Article  CAS  Google Scholar 

  • Kaewbai-ngam J et al (2022) Production of glycogen, PHB, biohydrogen, NAD (P) H, and proteins in Synechocystis sp. PCC 6803 disrupted in metabolically linked biosynthetic pathway (s). J Appl Phycol 34:1983–1995

    Article  CAS  Google Scholar 

  • Khetkorn W et al (2023) Photobiohydrogen production and in cyanobacteria strategies for H2 yield improvements in cyanobacteria. Adv Biochem Eng Biotechnol 183:253–280

    Google Scholar 

  • Ko TH, Hsu YC, Wang YF, Chang YH, Lin SK, Hsueh HT, Chen HH (2015) Variations of cellular components in Thermosynechococcus sp. CL-1 under electrochemical treatment. RSC advances. 5(84):68470–68475

    Article  CAS  Google Scholar 

  • Ko TH, Chang FH, Hsueh HT, Wang YF, Su CM, Huang LC, Chu H, Tseng CM, Ray DT, Shen YH (2018) Photocurrent production with thermophilic cyanobacterial strain under electrochemical treatment without adding of mediators. International Journal of Electrochemical Science. 13(4):3429–3440

    Article  CAS  Google Scholar 

  • Kumar S, Sreeharsha RV, Mudalkar S, Sarashetti PM, Reddy AR (2017) Molecular insights into photosynthesis and carbohydrate metabolism in Jatropha curcas grown under elevated CO2 using transcriptome sequencing and assembly. Sci Rep 7(1):11066

    Article  Google Scholar 

  • Kumar S et al (2019) Bioprospecting of microbes for biohydrogen production: current status and future challenges. In: Bioprocessing for biomolecules production. Wiley, Hoboken, pp 443–471

    Chapter  Google Scholar 

  • Lane CE, Benton MG (2015) Detection of the enzymatically-active polyhydroxyalkanoate synthase subunit gene, phaC, in cyanobacteria via colony PCR. Mol Cell Probes 29:454–460

    Article  CAS  Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    Article  CAS  Google Scholar 

  • Matsunaga T, Park CH, Bessho T, Mu D, Sancar A (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease (∗). J Biol Chem 271(19):11047–11050

    Article  CAS  Google Scholar 

  • McPhail KL, Correa J, Linington RG, González J, Ortega-Barría E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70(6):984–988

    Article  CAS  Google Scholar 

  • Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero MG (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60(3):175–182

    Article  CAS  Google Scholar 

  • Mund NK et al (2022) Advances in metabolic engineering of cyanobacteria for production of biofuels. Fuel 322:124117

    Article  CAS  Google Scholar 

  • Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol. Proceedings of the National Academy of Sciences. 110(4):1249–1254

    Article  CAS  Google Scholar 

  • Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y et al (2013) Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20(6):525–535

    Article  CAS  Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102(2):143–152

    Article  CAS  Google Scholar 

  • Parmar A et al (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5(5):e10821

    Article  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55(5):207–212

    Article  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in microbiology. 7:186282

    Article  Google Scholar 

  • Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S et al (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:212348

    Article  Google Scholar 

  • Sjöblom M, Matsakas L, Krige A, Rova U, Christakopoulos P (2017) Direct electricity generation from sweet sorghum stalks and anaerobic sludge. Ind Crop Prod 108:505–511

    Article  Google Scholar 

  • Song T, MÃ¥rtensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol 54(1):131–140

    Article  CAS  Google Scholar 

  • Sreeharsha RV, Mohan SV (2020) Obscure yet promising oleaginous yeasts for fuel and chemical production. Trends Biotechnol 38(8):873–887

    Article  CAS  Google Scholar 

  • Sreeharsha RV, Dubey N, Mohan SV (2023) Orienting biodiesel production towards sustainability and circularity by tailoring the feedstocks and processes. J Clean Prod:137526

    Google Scholar 

  • Vargas SR et al (2018) Optimization of biomass and hydrogen production by Anabaena sp.(UTEX 1448) in nitrogen-deprived cultures. Biomass Bioenergy 111:70–76

    Article  CAS  Google Scholar 

  • Wang G, Jia Q, Li T, Dai S, Wu H, He H et al (2014) Bacterioplanes sanyensis gen. nov., sp. nov., a PHB-accumulating bacterium isolated from a pool of Spirulina platensis cultivation. Arch Microbiol 196:739–744

    Article  CAS  Google Scholar 

  • Wang J et al (2021) A review on polyhydroxyalkanoate production from agricultural waste biomass: development, advances, circular approach, and challenges. Bioresour Technol 342:126008

    Article  CAS  Google Scholar 

  • Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344

    Article  CAS  Google Scholar 

  • Yodsang P et al (2018) Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand. Photosynthetica 56:334–341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sreeharsha, R.V., Venkata Mohan, S. (2024). Bacterial Photosynthesis for Nutrient Recovery and Value Addition. In: Microbial Photosynthesis. Springer, Singapore. https://doi.org/10.1007/978-981-97-1253-3_7

Download citation

Publish with us

Policies and ethics

Navigation