Optimized Quantum Implementation of SEED

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2023 (ICISC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14561))

Included in the following conference series:

  • 110 Accesses

Abstract

With the advancement of quantum computers, it has been demonstrated that Grover’s algorithm enables a potential reduction in the complexity of symmetric key cryptographic attacks to the square root. This raises increasing challenges in considering symmetric key cryptography as secure. In order to establish secure post-quantum cryptographic systems, there is a need for quantum post-quantum security evaluations of cryptographic algorithms. Consequently, NIST is estimating the strength of post-quantum security, driving active research in quantum cryptographic analysis for the establishment of secure post-quantum cryptographic systems.

In this regard, this paper presents a depth-optimized quantum circuit implementation for SEED, a symmetric key encryption algorithm included in the Korean Cryptographic Module Validation Program (KCMVP). Building upon our implementation, we conduct a thorough assessment of the post-quantum security for SEED. Our implementation for SEED represents the first quantum circuit implementation for this cipher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The full depth is naturally reduced thanks to the reduction in the Toffoli depth.

References

  1. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 212–219. ACM (1996)

    Google Scholar 

  3. NIST. Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

  4. NIST. Call for additional digital signature schemes for the post-quantum cryptography standardization process (2022). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

  5. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algorithm to AES: quantum resource estimates (2015)

    Google Scholar 

  6. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC. Cryptology ePrint Archive, Report 2019/1146 (2019). https://eprint.iacr.org/2019/1146

  7. Jang, K., Baksi, A., Song, G., Kim, H., Seo, H., Chattopadhyay, A.: Quantum analysis of AES. Cryptology ePrint Archive (2022)

    Google Scholar 

  8. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Efficient implementation of present and gift on quantum computers. Appl. Sci. 11(11), 4776 (2021)

    Article  Google Scholar 

  9. Jang, K., Baksi, A., Kim, H., Seo, H., Chattopadhyay, A.: Improved quantum analysis of speck and LowMC (full version). Cryptology ePrint Archive (2022)

    Google Scholar 

  10. Anand, R., Maitra, A., Mukhopadhyay, S.: Evaluation of quantum cryptanalysis on SPECK. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 395–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_18

    Chapter  Google Scholar 

  11. Yang, Y., Jang, K., Kim, H., Song, G., Seo, H.: Grover on SPARKLE. In: You, I., Youn, T.Y. (eds.) WISA 2022. LNCS, vol. 13720, pp. 44–59. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25659-2_4

    Chapter  Google Scholar 

  12. Jagielski, A., Kanciak, K.: Quantum resource estimation for a NIST LWC call finalist. Quantum Inf. Comput. 22(13 &14), 1132–1143 (2022)

    MathSciNet  Google Scholar 

  13. Roy, S., Baksi, A., Chattopadhyay, A.: Quantum implementation of ASCON linear layer. Cryptology ePrint Archive (2023)

    Google Scholar 

  14. Oh, Y., Jang, K., Baksi, A., Seo, H.: Depth-optimized implementation of ASCON quantum circuit. Cryptology ePrint Archive (2023)

    Google Scholar 

  15. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_10

    Chapter  Google Scholar 

  16. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF (2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

    Article  Google Scholar 

  17. Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H.: Optimized implementation of quantum binary field multiplication with Toffoli depth one. In: You, I., Youn, T.Y. (eds.) WISA 2022. LNCS, vol. 13720, pp. 251–264. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25659-2_18

    Chapter  Google Scholar 

  18. Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and optimization of a quantum polynomial-time attack on elliptic curve cryptography. In: Kawano, Y., Mosca, M. (eds.) TQC 2008. LNCS, vol. 5106, pp. 96–104. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89304-2_9

    Chapter  Google Scholar 

  19. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. ar**v preprint quant-ph/0410184 (2004)

    Google Scholar 

  20. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46, 493–505 (1998)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. RS-2023-00277994, Quantum Circuit Depth Optimization for ARIA, SEED, LEA, HIGHT, and LSH of KCMVP Domestic Cryptographic Algorithms, 80%) and this work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00627, Development of Lightweight BIoT technology for Highly Constrained Devices, 20%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwajeong Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, Y., Jang, K., Yang, Y., Seo, H. (2024). Optimized Quantum Implementation of SEED. In: Seo, H., Kim, S. (eds) Information Security and Cryptology – ICISC 2023. ICISC 2023. Lecture Notes in Computer Science, vol 14561. Springer, Singapore. https://doi.org/10.1007/978-981-97-1235-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1235-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1234-2

  • Online ISBN: 978-981-97-1235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation