Graphite and Carbide Friction and Wear

  • Chapter
  • First Online:
Friction and Wear in Metals

Abstract

In tribological applications like bearings and cutting tools, graphite and carbide are used as components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsen-Basse J (1983) Resistance of cemented carbides to sliding abrasion: role of binder metal. Sci Hard Mater: 797–813

    Google Scholar 

  2. Bushan B (ed) (2001) Modern tribology handbook, vol 2. CRC Press, Boca Raton

    Google Scholar 

  3. Hsu SM, Shen M (2004) Wear prediction of ceramics. Wear 256:867–878

    Article  CAS  Google Scholar 

  4. Liu C, Yin Y, Li C, Xu M, Li R, Chen Q (2022) Preparation and properties of lead-free copper matrix composites by electroless plating and mechanical alloying. Wear 488:204164

    Article  Google Scholar 

  5. Chacon-Nava JG, Stott FH, de la Torre SD, Martinez-Villafane A (2002) Erosion of alumina and silicon carbide at low-impact velocities. Mater Lett 55:269–273

    Article  CAS  Google Scholar 

  6. Wu Y, Liu Y, Chen H, Chen Y, **e D (2019) An investigation into the failure mechanism of severe abrasion of high-speed train brake discs on snowy days. Eng Fail Anal 101:121–134

    Article  Google Scholar 

  7. Colclough AF, Yeomans JA (1997) Hard particle erosion of silicon carbide and silicon carbide-titanium diboride from room temperature to 1000 °C. Wear 209(1–2):229–236

    Article  CAS  Google Scholar 

  8. Dinaharan S, Karpagarajan R, Palanivel J, Selvam DR (2021) Microstructure and sliding wear behavior of fly ash reinforced dual phase brass surface composites synthesized through friction stir processing. Mater Chem Phys 263:124430

    Article  CAS  Google Scholar 

  9. Pirso J, Voljus M, Juhani K, Letunovits S (2009) Two-body dry abrasive wear of cermets. Wear 266(1–2):21–29

    Article  CAS  Google Scholar 

  10. Straffelini G, Scardi P, Molinari A, Polini R (2001) Characterization and sliding behavior of HFCVD diamond coatings on WC–Co. Wear 249(5–6):461–472

    Article  CAS  Google Scholar 

  11. Chen F, Li Z, Luo Y, Li DJ, Ma WJ, Zhang C, Tang HX, Li F, **ao P (2021) Braking behaviors of Cu-Based PM brake pads mating with C/C–SiC and 30CrMnSi steel discs under high-energy braking. Wear 486:204019

    Google Scholar 

  12. Zum Gahr KH (1987) Microstructure and wear of materials, vol 10. Elsevier

    Google Scholar 

  13. Deng G, Tieu AK, Lan X, Su L, Wang L, Zhu Q, Zhu H (2020) Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0. 2 high entropy alloy. Tribol Int 144:106116

    Google Scholar 

  14. Vankataraman B, Sundararajan G (2002) The influence of sample geometry on the friction behaviour of carbon-carbon composites. Acta Metall. Mater 50:1153–1163

    Google Scholar 

  15. Bryggman U, Söderberg S (1986) Contact conditions in fretting. Wear 110(1):1–17

    Article  Google Scholar 

  16. Bai L, Ge Y, Zhu L, Chen Y, Yi M (2021) Preparation and properties of copper-plated expanded graphite/copper composites. Tribol Int 161:107094

    Article  CAS  Google Scholar 

  17. Vingsbo O, Söderberg S (1988) On fretting maps. Wear 126(2):131–147

    Article  CAS  Google Scholar 

  18. Czichos H, Santner E (2015) Tribologische Beanspruchung. Tribologie-Handbuch: Tribometrie, Tribomaterialien, Tribotechnik, 29–92

    Google Scholar 

  19. Hsu SM, Shen MC (1996) Ceramic wear maps. Wear 200(1–2):154–175

    Article  CAS  Google Scholar 

  20. Bijwe J, Kumar M (2007) Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance. Wear 263:1243–1248

    Article  CAS  Google Scholar 

  21. Zhang P, Zhang L, Wei D, Wu P, Cao J, Shijia C, Qu X (2020) A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear 444:203182

    Google Scholar 

  22. Zhou Z, Shan Q, Jiang Y, Li Z, Zhang Z (2019) Effect of nanoscale V2C precipitates on the three-body abrasive wear behavior of high-Mn austenitic steel. Wear 436–437:203009

    Google Scholar 

  23. Xu J, Kato K (2000) Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 245(1–2):61–75

    Google Scholar 

  24. Deng G, Zhao X, Su L, Wei P, Zhang L, Zhan L, Chong Y, Zhu H, Tsuji N (2021) Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy. J Mater Sci Technol 94:183–195

    Google Scholar 

  25. Wang YL, ** YS, Wen SZ (1988) The analysis of the friction and wear mechanisms of plasma-sprayed ceramic coating at 450 ℃. Wear 128:265–276

    Google Scholar 

  26. Kuze S, Du Boulay D, Ishizawa N, Saiki A, Pring A (2004) X-ray diffraction evidence for a monoclinic form of stibnite, Sb S, below 290 K. Am Mineral 89:1022–1025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Samarai, R.A., Al-Douri, Y. (2024). Graphite and Carbide Friction and Wear. In: Friction and Wear in Metals. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-1168-0_4

Download citation

Publish with us

Policies and ethics

Navigation