Implementation of Hydro-thermal Coupling Model of Windshield Defrosting System in OpenFOAM

  • Conference paper
  • First Online:
Advances in Mechanical Design (ICMD 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 155))

Included in the following conference series:

  • 128 Accesses

Abstract

This paper implements a hydro-thermal coupling model for windshield defrosting system. The enthalpy method with a temperature-based formulation is used for modeling the defrosting process, and Darcy term is added to the momentum equation to solve the flow field and capture the interface between phases with a single fixed grid. Dirichlet-type thermal coupling boundary condition is used to enforce continuity of temperature and heat flux at the interfaces. The k-ω SST model is adopted for turbulence modeling to achieve better prediction of im**ing jet flow in the cabin. The solver is implemented under the assumption of frozen flow, performs a RANS simulation to obtain velocity field in the cabin, and then conducts a transient simulation to solve the fluid-thermal coupling based on SIMPLE algorithm. The solver is used in the simulation of windshield defrosting of a simplified car cabin model. The results show that the defrosting process agree well with Fluent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliveira, A.V.S., Maréchal, D., Borean, J.-L., Schick, V., Teixeira, J., Denis, S., Gradeck, M.: Experimental study of the heat transfer of single-jet im**ement cooling onto a large heated plate near industrial conditions. Int. J. Heat Mass Transf. 184, 121998 (2022)

    Google Scholar 

  2. Chang, S.W., Shen, H.-D.: Heat transfer of im**ing jet array with web-patterned grooves on nozzle plate. Int. J. Heat Mass Transf. 141, 129–144 (2019)

    Article  Google Scholar 

  3. Singh, A.: Numerical investigation on location of protrusions and dimples during slot jet im**ement on a concave surface using hybrid ANN–GA. Heat Transfer 50, 1171–1197 (2021)

    Article  Google Scholar 

  4. Wang, C., Wang, L., Sundén, B.: A novel control of jet im**ement heat transfer in cross-flow by a vortex generator pair. Int. J. Heat Mass Transf. 88, 82–90 (2015)

    Article  Google Scholar 

  5. Zhang, Z., Li, Q., Bruecker, C., Zhang, Q.: Enhanced thermal performance with high-amplitude intermittent im**ement cooling. Int. J. Heat Mass Transf. 185, 122359 (2022)

    Google Scholar 

  6. Rasipuram, S.C., Nasr, K.J.: A numerically-based parametric study of heat transfer off an inclined surface subject to im**ing airflow. Int. J. Heat Mass Transf. 47, 4967–4977 (2004)

    Article  Google Scholar 

  7. Kang, S.J., Kader, M.F., Jun, Y.D., Lee, K.B.: Automobile defrosting system analysis through a full-scale model. Int. J. Automot. Technol. 12, 39–44 (2011)

    Article  Google Scholar 

  8. Cao, S., Zhang, Z., Huang, Y., Zhang, Q., Xu, Z.: Numerical optimization of the defrosting performance of the vehicle based on discrete adjoint approach. Int. J. Automot. Technol. 22, 109–118 (2021)

    Google Scholar 

  9. König-Haagen, A., Franquet, E., Pernot, E., Brüggemann, D.: A comprehensive benchmark of fixed-grid methods for the modeling of melting. Int. J. Therm. Sci. 118, 69–103 (2017)

    Article  Google Scholar 

  10. König-Haagen, A., Franquet, E., Faden, M., Brüggemann, D.: Influence of the convective energy formulation for melting problems with enthalpy methods. Int. J. Therm. Sci. 158, 106477 (2020)

    Article  Google Scholar 

  11. Davin, T., Lefez, B., Guillet, A.: Supercooling of phase change: a new modeling formulation using apparent specific heat capacity. Int. J. Therm. Sci. 147, 106121 (2020)

    Article  Google Scholar 

  12. Yakhya, S., Ernez, S., Morency, F.: Computational fluid dynamics investigation of transient effects of aircraft ground deicing jets. J. Thermophys. Heat Transf. 33, 117–127 (2019)

    Article  Google Scholar 

  13. Klimeš, L., Mauder, T., Charvát, P., Štětina, J.: Front tracking in modelling of latent heat thermal energy storage: assessment of accuracy and efficiency, benchmarking and GPU-based acceleration. Energy 155, 297–311 (2018)

    Article  Google Scholar 

  14. Roy, S., Kumar, H., Anderson, R.: Efficient defrosting of an inclined flat surface. Int. J. Heat Mass Transf. 48, 2613–2624 (2005)

    Article  Google Scholar 

  15. Zuckerman, N., Lior, N.: Jet im**ement heat transfer: physics, correlations, and numerical modeling. In: Greene, G.A., Hartnett, J.P., Bar-Cohen, A., Cho, Y.I. (eds.) Advances in Heat Transfer, pp. 565–631. Elsevier (2006)

    Google Scholar 

  16. Rakotondrandisa, A., Sadaka, G., Danaila, I.: A finite-element toolbox for the simulation of solid–liquid phase-change systems with natural convection. Comput. Phys. Commun.ommun. 253, 107188 (2020)

    Article  MathSciNet  Google Scholar 

  17. Kumar, P., Saha, S.K., Sharma, A.: Entropy generation minimization-based heat transfer and mass transfer study of rectangular packed-bed filled with spherical particles. Fusion Eng. Des. 184, 113295 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Xu, H., Zhao, S., Zou, P., Wang, J. (2024). Implementation of Hydro-thermal Coupling Model of Windshield Defrosting System in OpenFOAM. In: Tan, J., Liu, Y., Huang, HZ., Yu, J., Wang, Z. (eds) Advances in Mechanical Design. ICMD 2023. Mechanisms and Machine Science, vol 155. Springer, Singapore. https://doi.org/10.1007/978-981-97-0922-9_70

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0922-9_70

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0921-2

  • Online ISBN: 978-981-97-0922-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation