Atomistic Modelling of Bio-Nanocomposites for Bone Tissue Engineering Applications

  • Chapter
  • First Online:
Polymer Composites: From Computational to Experimental Aspects

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 85 Accesses

Abstract

Biopolymers, such as collagen, chitosan, and cellulose, are abundant in nature. Their potential use as scaffolds in bone tissue engineering may open new avenues for speedy tissue recovery. However, they are weak in mechanical properties and hence require a filler material to bear the mechanical loads. Current chapter discusses the use of biopolymers in the form of bio-nanocomposites as scaffolds. The chapter further discusses the use of atomistic modelling techniques such as molecular dynamics for exploring the mechanical behaviour of these bio-nanocomposites. The atomistic modelling techniques are instrumental in saving time and cost of experimental techniques by predicting the properties of materials before experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shchipunov Y (2012) Bionanocomposites: green sustainable materials for the near future. Pure Appl Chem 84(12):2579–2607

    Article  CAS  Google Scholar 

  2. Mittal V (2011) Nanocomposites with biodegradable polymers: synthesis, properties, and future perspectives, vol. 68. Oxford University Press

    Google Scholar 

  3. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19(10):1309–1319

    Article  CAS  Google Scholar 

  4. Díaz A, Katsarava R, Puiggalí J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly (ester amide) s. Int J Mol Sci 15(5):7064–7123

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laurencin C, Deng M (2014) Natural and synthetic biomedical polymers. Newnes

    Google Scholar 

  6. Fonseca AC, Gil MH, Simoes PN (2014) Biodegradable poly (ester amide) s–a remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog Polym Sci 39(7):1291–1311

    Article  CAS  Google Scholar 

  7. Lendlein A, Sisson A (2011) Handbook of biodegradable polymers: isolation, synthesis, characterization and applications. Wiley & Sons

    Google Scholar 

  8. Rodriguez-Galan A, Franco L, Puiggali J (2010) Degradable poly (ester amide) s for biomedical applications. Polym (Basel) 3(1):65–99

    Article  Google Scholar 

  9. Felton GP (2011) Biodegradable polymers: processing, degradation, and applications. Nova Science Publishers

    Google Scholar 

  10. Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5(May):1–33. https://doi.org/10.1038/boneres.2017.59

    Article  CAS  Google Scholar 

  11. Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963. https://doi.org/10.1016/j.biomaterials.2006.02.031

    Article  CAS  PubMed  Google Scholar 

  12. Naseri N, Poirier JM, Girandon L, Fröhlich M, Oksman K, Mathew AP (2016) 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6(8):5999–6007. https://doi.org/10.1039/c5ra27246g

    Article  CAS  Google Scholar 

  13. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8(9):3191–3200. https://doi.org/10.1016/j.actbio.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  14. Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1354–1365. https://doi.org/10.1016/j.ijbiomac.2016.01.112

    Article  CAS  PubMed  Google Scholar 

  15. Newman P, Minett A, Ellis-Behnke R, Zreiqat H (2013) Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine Nanotechnol Biol Med 9(8):1139–1158. https://doi.org/10.1016/j.nano.2013.06.001

  16. Gao C, Feng P, Peng S, Shuai C (2017) Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 61:1–20. https://doi.org/10.1016/j.actbio.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  17. Ebrahimi S, Montazeri A, Rafii-Tabar H (2013) Molecular dynamics study of the interfacial mechanical properties of the graphene–collagen biological nanocomposite. Comput Mater Sci 69:29–39. https://doi.org/10.1016/j.commatsci.2012.11.030

    Article  CAS  Google Scholar 

  18. Sharma A, Molla MS, Katti KS, Katti DR (2017) Multiscale models of degradation and healing of bone tissue engineering nanocomposite scaffolds. J Nanomechanics Micromechanics 7(4):1–14. https://doi.org/10.1061/(asce)nm.2153-5477.0000133

    Article  Google Scholar 

  19. Scocchi G, Posocco P, Fermeglia M, Pricl S (2007) Polymer-clay nanocomposites: a multiscale molecular modeling approach. J Phys Chem B 111(9):2143–2151. https://doi.org/10.1021/jp067649w

    Article  CAS  PubMed  Google Scholar 

  20. Heller H, Grubmüller H, Schulten K (1990) Molecular dynamics simulation on a parallel computer. Mol Simul 5(3–4):133–165

    Article  Google Scholar 

  21. Zhang C, Coasne B, Guyer R, Derome D, Carmeliet J (2020) Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer. Cellulose 27:89–99

    Article  CAS  PubMed  Google Scholar 

  22. Bejagam KK, Gupta NS, Lee K-S, Iverson CN, Marrone BL, Pilania G (2022) Predicting the mechanical response of polyhydroxyalkanoate biopolymers using molecular dynamics simulations. Polym (Basel) 14(2):345

    Article  CAS  Google Scholar 

  23. Golberg D et al (2007) Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett 7(7):2146–2151. https://doi.org/10.1021/nl070863r

    Article  CAS  Google Scholar 

  24. Arenal R, Wang M-S, Xu Z, Loiseau A, Golberg D (2011) Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. Nanotechnology 22(26):265704. https://doi.org/10.1088/0957-4484/22/26/265704

    Article  CAS  PubMed  Google Scholar 

  25. Parashar A, Mertiny P (2012) Study of mode i fracture of graphene sheets using atomistic based finite element modeling and virtual crack closure technique. Int J Fract 176(1):119–126. https://doi.org/10.1007/s10704-012-9718-y

    Article  CAS  Google Scholar 

  26. Li C, Chou T-W (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499. https://doi.org/10.1016/S0020-7683(03)00056-8

    Article  Google Scholar 

  27. Boldrin L, Scarpa F, Chowdhury R, Adhikari S (2011) Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50):505702. https://doi.org/10.1088/0957-4484/22/50/505702

    Article  CAS  PubMed  Google Scholar 

  28. Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64(23):235406. https://doi.org/10.1103/PhysRevB.64.235406

    Article  CAS  Google Scholar 

  29. Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys Rev B 85(12):125428. https://doi.org/10.1103/PhysRevB.85.125428

    Article  CAS  Google Scholar 

  30. Peng Q, Ji W, De S (2012) Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput Mater Sci 56:11–17. https://doi.org/10.1016/j.commatsci.2011.12.029

    Article  CAS  Google Scholar 

  31. Tersoff J (1986) New empirical model for the structural properties of silicon. Phys Rev Lett 56(6):632–635. https://doi.org/10.1103/PhysRevLett.56.632

    Article  CAS  PubMed  Google Scholar 

  32. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000. https://doi.org/10.1103/PhysRevB.37.6991

    Article  CAS  Google Scholar 

  33. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61(25):2879–2882. https://doi.org/10.1103/PhysRevLett.61.2879

    Article  CAS  PubMed  Google Scholar 

  34. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568. https://doi.org/10.1103/PhysRevB.39.5566

    Article  CAS  Google Scholar 

  35. Jones JE (1924) On the determination of molecular fields.—II. From the equation of state of a gas. Proc R Soc Lond Ser A, Contain Pap Math Phys Character 106(738):463–477

    Google Scholar 

  36. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453. https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  37. Jeong B-W, Lim J-K, Sinnott SB (2007) Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion. Appl Phys Lett 90(2)

    Google Scholar 

  38. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486. https://doi.org/10.1063/1.481208

    Article  CAS  Google Scholar 

  39. MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolym Orig Res Biomol 56(4):257–265

    CAS  Google Scholar 

  40. Sun H, Ren P, Fried JR (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8(1):229–246. https://doi.org/10.1016/S1089-3156(98)00042-7

    Article  CAS  Google Scholar 

  41. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458–9471. https://doi.org/10.1103/PhysRevB.42.9458

    Article  CAS  Google Scholar 

  42. Matsunaga K, Iwamoto Y (2001) Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron. J Am Ceram Soc 84(10):2213–2219. https://doi.org/10.1111/j.1151-2916.2001.tb00990.x

    Article  CAS  Google Scholar 

  43. Matsunaga K, Fisher C, Matsubara H (2000) Tersoff potential parameters for simulating cubic boron carbonitrides. Jpn J Appl Phys 39(Part 2, No. 1A/B):L48–L51. https://doi.org/10.1143/jjap.39.l48

  44. Albe K, Möller W (1998) Modelling of boron nitride: atomic scale simulations on thin film growth. Comput Mater Sci 10(1):111–115. https://doi.org/10.1016/S0927-0256(97)00172-9

    Article  CAS  Google Scholar 

  45. Albe K, Möller W, Heinig K-H (1997) Computer simulation and boron nitride. Radiat Eff Defects Solids 141(1–4):85–97. https://doi.org/10.1080/10420159708211560

    Article  CAS  Google Scholar 

  46. Nord J, Albe K, Erhart P, Nordlund K (2003) Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J Phys Condens Matter 15(32):5649–5662. https://doi.org/10.1088/0953-8984/15/32/324

    Article  CAS  Google Scholar 

  47. Sevik C, Kinaci A, Haskins JB, Çağın T (2011) Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys Rev B 84(8):85409. https://doi.org/10.1103/PhysRevB.84.085409

    Article  CAS  Google Scholar 

  48. Rath A, Mathesan S, Ghosh P (2016) Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked chitosan biopolymer. J Mech Behav Biomed Mater 55:42–52. https://doi.org/10.1016/j.jmbbm.2015.10.005

    Article  CAS  Google Scholar 

  49. Kulasinski K, Guyer R, Keten S, Derome D, Carmeliet J (2015) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules 48(8):2793–2800. https://doi.org/10.1021/acs.macromol.5b00248

    Article  CAS  Google Scholar 

  50. Lai ZB, Bai R, Lei Z, Yan C (2018) Interfacial mechanical behaviour of protein–mineral nanocomposites: a molecular dynamics investigation. J Biomech 73:161–167. https://doi.org/10.1016/j.jbiomech.2018.03.044

    Article  PubMed  Google Scholar 

  51. Patel M, Dubey DK, Singh SP (2020) Phenomenological models of Bombyx mori silk fibroin and their mechanical behavior using molecular dynamics simulations. Mater Sci Eng C 108:110414. https://doi.org/10.1016/j.msec.2019.110414

    Article  CAS  Google Scholar 

  52. Pandele AM, IONIŢĂ M, Iovu H (2014) Molecular modeling of mechanical properties of the chitosan based graphene composites. UPB Sci Bull Ser B Chem Mater Sci 76:107–112

    Google Scholar 

  53. Rahman R, Foster JT, Haque A (2013) Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites. J Phys Chem A 117(25):5344–5353. https://doi.org/10.1021/jp402814t

    Article  CAS  PubMed  Google Scholar 

  54. Bayoumy AM et al (2019) Functionalization of graphene quantum dots (GQDs) with chitosan biopolymer for biophysical applications. Opt Quantum Electron 52(1):16. https://doi.org/10.1007/s11082-019-2134-z

    Article  CAS  Google Scholar 

  55. Menazea AA et al (2020) Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Comput Theor Chem 1189:112980. https://doi.org/10.1016/j.comptc.2020.112980

    Article  CAS  Google Scholar 

  56. Masoumi M, Jahanshahi M, Ahangari MG, Darzi GN (2020) Density functional theory study on the interaction of chitosan monomer with TiO2, SiO2 and carbon nanotubes. Mater Chem Phys 255:123576. https://doi.org/10.1016/j.matchemphys.2020.123576

    Article  CAS  Google Scholar 

  57. Omar A, Bayoumy AM, Aly AA (2022) Functionalized graphene oxide with chitosan for dopamine biosensing. J Funct Biomater 13(2). https://doi.org/10.3390/jfb13020048

  58. Kossovich EL, Safonov RA (2016) Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale. J Mol Model 22(4):75. https://doi.org/10.1007/s00894-016-2942-z

    Article  CAS  PubMed  Google Scholar 

  59. Shende P, Pathan N (2021) Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr Polym 255:117385. https://doi.org/10.1016/j.carbpol.2020.117385

    Article  CAS  PubMed  Google Scholar 

  60. Jayakumar A et al (2023) Energy harvesting using high-strength and flexible 3D-printed cellulose/hexagonal boron nitride nanosheet composites. ACS Appl Nano Mater 6(15):14278–14288. https://doi.org/10.1021/acsanm.3c02233

    Article  CAS  Google Scholar 

  61. Anota EC, Rodríguez LD, Cocoletzi GH (2013) Influence of point defects on the adsorption of chitosan on graphene-like BN nanosheets. Graphene 1(2):124–130

    Article  Google Scholar 

  62. Verma A, Parashar A (2017) The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys Chem Chem Phys 19(24):16023–16037

    Article  CAS  PubMed  Google Scholar 

  63. Verma A, Parashar A (2018) Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide. Nanotechnology 29(11):115706

    Article  PubMed  Google Scholar 

  64. Verma A, Parashar A, Packirisamy M (2018) Tailoring the failure morphology of 2D bicrystalline graphene oxide. J Appl Phys 124(1)

    Google Scholar 

  65. Verma A, Parashar A (2018) Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput Mater Sci 143:15–26

    Article  CAS  Google Scholar 

  66. Verma A, Parashar A (2018) Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups. Diam Relat Mater 88:193–203

    Article  CAS  Google Scholar 

  67. Verma A, Parashar A, Packirisamy M (2018) Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. Wiley Interdiscip Rev Comput Mol Sci 8(3):e1346

    Article  Google Scholar 

  68. Verma A, Zhang W, Van Duin AC (2021) ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets. Phys Chem Chem Phys 23(18):10822–10834

    Article  CAS  PubMed  Google Scholar 

  69. Singla V, Verma A, Parashar A (2018) A molecular dynamics based study to estimate the point defects formation energies in graphene containing STW defects. Mater Res Express 6(1):015606

    Article  Google Scholar 

  70. Kataria A, Verma A, Sethi SK, Ogata S (2022) Introduction to interatomic potentials/forcefields. In: Forcefields for atomistic-scale simulations: materials and applications, pp 21–49. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-19-3092-8_2

  71. Verma A, Kumar R, Parashar A (2019) Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach. Phys Chem Chem Phys 21(11):6229–6237

    Article  CAS  PubMed  Google Scholar 

  72. Verma A, Parashar A, Packirisamy M (2019) Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl Surf Sci 470:1085–1092

    Article  CAS  Google Scholar 

  73. Chaurasia A, Verma A, Parashar A, Mulik RS (2019) Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C 123(32):20059–20070

    Article  CAS  Google Scholar 

  74. Shankar U, Sethi SK, Verma A (2022) Forcefields and modeling of polymer coatings and nanocomposites. In: Forcefields for atomistic-scale simulations: materials and applications, pp 81–98. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-19-3092-8_4

Download references

Acknowledgements

We express our gratitude to NIT Hamirpur for their invaluable academic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J., Kumar, R. (2024). Atomistic Modelling of Bio-Nanocomposites for Bone Tissue Engineering Applications. In: Sethi, S.K., Gupta, H.S., Verma, A. (eds) Polymer Composites: From Computational to Experimental Aspects. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-0888-8_4

Download citation

Publish with us

Policies and ethics

Navigation