Utilization of Agro-waste as a Reinforcement Material in Polymer Matrix for Biodegradable Packaging Applications

  • Chapter
  • First Online:
Sustainable Clean Energy Production Using Waste Biomass

Abstract

In present juncture, the application of synthetic polymers has attracted a lot of awareness due to them being readily available and their low density, strong water repelling nature, and ease to synthesize. Therefore, we require to notice limiting the usage of essential plastics and come up with some alternatives to curtail the use of non-biodegradable garbage. Compositional analyses such as cellulose, hemicelluloses, and lignin contents of agricultural wastes using TAPPI method are described in this chapter. Composites synthesized from polymer and extensive available agricultural wastes are biodegradable in nature. The reliable percentage of cellulose in agricultural wastes is the main cause to motivate researchers for using wastes as a reinforcing agent in polymer matrix. Various types of synthesizing techniques such as hand layup, extrusion, injection, melt mixing, and solvent casting methods have been used by numerous scientists for green packaging film. The interfacial interaction of synthetic polymer and agricultural wastes is also enhanced using various pretreatment techniques such as physical (chip**, shredding, milling, and grinding), biological, chemical (acid, alkali, solvent, etc.), and physiochemical treatment (lime pretreatment/wet oxidative pretreatment, organosolv pretreatment, ammonia fiber/freeze explosion, steam pretreatment, etc.). This chapter elucidates various analytical techniques, i.e., tensile strength, optical characteristics, thermal stability, and water vapor permeability tests, to observe a feasibility to agricultural waste-based packaging film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  PubMed  Google Scholar 

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    Article  CAS  Google Scholar 

  • Arrakhiz F, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012) Mechanical and thermal properties of polypropylene reinforced with alfa fiber under different chemical treatment. Mater Des 35:318–322

    Article  CAS  Google Scholar 

  • Babaei I, Madanipour M, Farsi M, Farajpoor A (2014) Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Compos B Eng 56:163–170

    Article  CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Volk J (2010) Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos A Appl Sci Manuf 41:480–488

    Article  Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  • Boonsiriwit A, **ao Y, Joung J, Kim M, Singh S, Lee YS (2020) Alkaline halloysite nanotubes/low density polyethylene nanocomposite films with increased ethylene absorption capacity: applications in cherry tomato packaging. Food Packag Shelf Life 25:100533

    Article  Google Scholar 

  • Chaitanya S, Singh AP, Singh I (2017) Processing of lignocellulosic fiber-reinforced biodegradable composites. In: Natural fiber-reinforced biodegradable and bioresorbable polymer composites. Elsevier

    Google Scholar 

  • Chawla K, Bastos A (1979) The mechanical properties of jute fibers and polyester/jute composites. Mech Behav Mater 3:191–196

    Google Scholar 

  • Daramola O, Olajide J, Oladele I, Adediran A, Adewuyi B, Muhammed A, Sadiku E (2021) Mechanical and wear behaviour of polylactic acid matrix composites reinforced with crab-shell synthesized chitosan microparticles. Mater Today Proc 38:999–1005

    Article  CAS  Google Scholar 

  • Dayo AQ, Gao B-C, Wang J, Liu W-B, Derradji M, Shah AH, Babar AA (2017) Natural hemp fiber reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties. Compos Sci Technol 144:114–124

    Article  CAS  Google Scholar 

  • Dhakal HN, Ismail SO, Zhang Z, Barber A, Welsh E, Maigret J-E, Beaugrand J (2018) Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Compos A Appl Sci Manuf 113:350–358

    Article  CAS  Google Scholar 

  • Dixit S, Yadav VL (2019a) Optimization of polyethylene/polypropylene/alkali modified wheat straw composites for packaging application using RSM. J Clean Prod 240:118228

    Article  CAS  Google Scholar 

  • Dixit S, Yadav VL (2019b) Synthesis of green thermally resistant composite: a review. Indian J Chem Technol (IJCT) 26:494–503

    CAS  Google Scholar 

  • Dixit S, Yadav VL (2020) Comparative study of polystyrene/chemically modified wheat straw composite for green packaging application. Polym Bull 77:1307–1326

    Article  CAS  Google Scholar 

  • Dixit S, Yadav VL (2021a) Biodegradable polymer composite films for green packaging applications. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, pp 177–193

    Chapter  Google Scholar 

  • Dixit S, Yadav VL (2021b) Green composite film synthesized from agricultural waste for packaging applications. In: Thomas S, Balakrishnan P (eds) Green composites. Springer, Singapore

    Google Scholar 

  • Dixit S, Joshi B, Kumar P, Yadav VL (2020) Novel hybrid structural biocomposites from alkali treated-date palm and coir fibers: morphology, thermal and mechanical properties. J Polym Environ 28:2386–2392

    Article  CAS  Google Scholar 

  • Dixit S, Mishra G, Yadav VL (2022) Optimization of novel bio-composite packaging film based on alkali-treated hemp fiber/polyethylene/polypropylene using response surface methodology approach. Polym Bull 79:2559–2583

    Article  CAS  Google Scholar 

  • Etaati A, Wang H, Pather S, Yan Z, Mehdizadeh SA (2013) 3D X-ray microtomography study on fibre breakage in noil hemp fibre reinforced polypropylene composites. Compos B Eng 50:239–246

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • Gamage GR, Park H-J, Kim KM (2009) Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Res Int 42:832–839

    Article  CAS  Google Scholar 

  • Gond DK, Dixit S, Kumar P, Mishra PK, Yadav VL (2022) Pervaporation separation of toluene-heptane mixtures with polyvinyl chloride/alumina/activated carbon membranes. J Sci Ind Res 81:118–124

    CAS  Google Scholar 

  • Hiremath SS (2020) Natural fiber reinforced composites in the context of biodegradability: a review

    Google Scholar 

  • Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci 119:3696–3707

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Johar N, Ahmad I (2017) Starch biocomposite film reinforced by multiscale rice husk fiber. Compos Sci Technol 151:147–155

    Article  CAS  Google Scholar 

  • Khan BA, Na H, Chevali V, Warner P, Zhu J, Wang H (2018) Glycidyl methacrylate-compatibilized poly (lactic acid)/hemp hurd biocomposites: processing, crystallization, and thermo-mechanical response. J Mater Sci Technol 34:387–397

    Article  CAS  Google Scholar 

  • Kohlmann K, Sarikaya A, Westgate P, Weil J, Velayudhan A, Hendrickson R, Ladisch M (1995) Enhanced enzyme activities on hydrated lignocellulosic substrates. ACS Publications

    Google Scholar 

  • Kumar P, Dixit S, Yadav VL (2019) Effect of hydrophilic bentonite nano particle on the performance of polyvinylchloride membrane. Mater Res Express 6:126415

    Article  CAS  Google Scholar 

  • Kumar P, Singh R, Dixit S, Yadav VL (2020) Pervaporation of ethanol/water mixtures by polyethylene based fly ash composite membranes. J Sci Ind Res 79:873–877

    Google Scholar 

  • Laadila MA, Hegde K, Rouissi T, Brar SK, Galvez R, Sorelli L, Cheikh RB, Paiva M, Abokitse K (2017) Green synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acid. J Clean Prod 164:575–586

    Article  CAS  Google Scholar 

  • Lee B-H, Kim H-J, Yu W-R (2009) Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers Polymers 10:83–90

    Article  CAS  Google Scholar 

  • Lu N, Oza S (2013) Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Compos Part B Eng 44:484–490

    Article  CAS  Google Scholar 

  • Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny J, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93:276–289

    Article  CAS  Google Scholar 

  • Magnusson L, Islam R, Sparling R, Levin D, Cicek N (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrog Energy 33:5398–5403

    Article  CAS  Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass

    Google Scholar 

  • Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1

    Article  Google Scholar 

  • Mok WS-L, Antal MJ Jr (1994) Biomass fractionation by hot compressed liquid water. In: Advances in thermochemical biomass conversion. Springer

    Google Scholar 

  • Orasugh JT, Saha NR, Rana D, Sarkar G, Mollick MMR, Chattoapadhyay A, Mitra BC, Mondal D, Ghosh SK, Chattopadhyay D (2018) Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: a novel material with potential for application in packaging and transdermal drug delivery system. Ind Crop Prod 112:633–643

    Article  CAS  Google Scholar 

  • Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, Triantafyllidis K, Bikiaris DN (2015) Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim 121:93–105

    Article  CAS  Google Scholar 

  • Senthilkumar K, Saba N, Ra**i N, Chandrasekar M, Jawaid M, Siengchin S, Alotman OY (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729

    Article  CAS  Google Scholar 

  • Shahinur S, Hasan M (2020) Jute/coir/banana fiber reinforced bio-composites: critical review of design, fabrication, properties and applications

    Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  • Suardana N, Piao Y, Lim JK (2011) Mechanical properties of hemp fibers and hemp/pp composites: effects of chemical surface treatment. Mater Phys Mech 11:1–8

    CAS  Google Scholar 

  • Suffo M, De La Mata M, Molina S (2020) A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials. J Clean Prod 257:120382

    Article  CAS  Google Scholar 

  • Tajeddin B (2015) A comparison of MAPE and PEG effects on the mechanical characteristics of wheat straw/LDPE biocomposites for packaging application. Polym Polym Compos 23:663–668

    CAS  Google Scholar 

  • Thiagamani SMK, Sivakumar P, Srinivasan M, Yagna SNB, Hossein E-K, Meena M, Rangappa SM, Siengchin S (2023) Isolation and characterization of agro-waste biomass sapodilla seeds as reinforcement in potential polymer composite applications. Heliyon 9:e17760

    Article  PubMed  PubMed Central  Google Scholar 

  • Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials 6:226

    Article  Google Scholar 

  • Varghese SA, Pulikkalparambil H, Promhuad K, Srisa A, Laorenza Y, Jarupan L, Nampitch T, Chonhenchob V, Harnkarnsujarit N (2023) Renovation of agro-waste for sustainable food packaging: a review. Polymers 15:648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum Stover. Crop Sci 47:S-142–S-153

    Article  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn Stover cellulose. Biotechnol Bioeng 86:88–98

    Article  CAS  PubMed  Google Scholar 

  • Zegaoui A, Derradji M, Ma R-K, Cai W-A, Medjahed A, Liu W-B, Dayo AQ, Wang J, Wang G-X (2018) Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Mater Chem Phys 213:146–156

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, ** S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

  • Zia J, Paul UC, Heredia-Guerrero JA, Athanassiou A, Fragouli D (2019) Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer 175:137–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobhit Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, S.B., Dixit, S., Yadav, V.L., Mishra, G., Sawood, G.M., Singh, N. (2024). Utilization of Agro-waste as a Reinforcement Material in Polymer Matrix for Biodegradable Packaging Applications. In: Pal, D.B., Rai, A.K., Siddiqui, S. (eds) Sustainable Clean Energy Production Using Waste Biomass. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-97-0840-6_8

Download citation

Publish with us

Policies and ethics

Navigation