Conventional Methods and Technological Advancements of Ethanol Production from Lignocellulosic Biomass

  • Chapter
  • First Online:
Sustainable Clean Energy Production Using Waste Biomass

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 63 Accesses

Abstract

The use of bioethanol derived from lignocellulosic feedstocks has shown great potential as a renewable fuel option. This sustainable substitute to fossil fuels can be helpful to diminish greenhouse gas emissions. This chapter offers a comprehensive overview of ethanol production from lignocellulosic biomass, including recent technological advancements. It addresses the critical challenges faced in lignocellulosic ethanol production and highlights innovative technologies and strategies developed to overcome these challenges. Various pretreatment methods are also discussed along with enzymatic hydrolysis techniques and fermentation approaches. These methods aim to enhance the efficiency and economics of bioethanol production from lignocellulosic feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agustini L, Efiyanti L, Faulina SA, Santoso E (2012) Isolation and characterization of cellulase-and xylanase-producing microbes isolated from tropical forests in Java and Sumatra. Int J Environ Sci Technol 3:154–167

    CAS  Google Scholar 

  • Anonymous (2023) What a waste 2.0: a global snapshot of solid waste management to 2050. The World Bank

    Google Scholar 

  • Awodumi OB, Adewuyi AO (2020) The role of non-renewable energy consumption in economic growth and carbon emission: evidence from oil producing economies in Africa. Energ Strat Rev 27:100434

    Article  Google Scholar 

  • Azizul HM, Kang TH, Kim JH, Yun HD (2012) Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J Microbiol Biotechnol 22:1681–1691

    Article  Google Scholar 

  • Balat M (2007) An overview of biofuels and policies in the European Union. Energy Sources B 2:167–181

    Article  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  • Balat AK, Chan E, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran K, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

    Article  PubMed  PubMed Central  Google Scholar 

  • Buah W, Cunliffe A, Williams P (2007) Characterization of products from the pyrolysis of municipal solid waste. Process Saf Environ Prot 85:450–457

    Article  CAS  Google Scholar 

  • Cao W, Sun C, Liu R, Yin R, Wu X (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour Technol 111:215–221

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhao J, **a L (2009) Comparison of four different chemical pretreatments of corn Stover for enhancing enzymatic digestibility. Biomass Bioenergy 33:1381–1385

    Article  CAS  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549

    Article  CAS  Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources A 27:327–337

    Article  CAS  Google Scholar 

  • Demirbas A (2008) The importance of bioethanol and biodiesel from biomass. Energy Sources B 3:177–185

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, Germany

    Book  Google Scholar 

  • Galbe M, Zachhi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  • Gírio F, Fonseca C, Carvalheiro F, Duarte L, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Biofuels:147–177

    Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145:138–151

    Article  CAS  Google Scholar 

  • Hou XD, Smith TJ, Li N, Zong MH (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109:2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Humbird D, Mohagheghi A, Dowe N, Schell DJ (2010) Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn Stover. Biotechnol Prog 26:1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (2008) Engineering the Pichia stipitis genome for fermentation of hemicellulose hydrolysates. Bioenergy ASM Press, Washington, DC, pp 37–47

    Google Scholar 

  • Kallioinen A, Uusitalo J, Pahkala K, Kontturi M, Viikari L, von Weymarn N et al (2012) Reed canary grass as a feedstock for 2nd generation bioethanol production. Bioresour Technol 123:669–672

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Lee B, Park J-Y, Choi S-A, Han J-I (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr Polym 99:563–567

    Article  CAS  PubMed  Google Scholar 

  • Koppram R, Tomás-Pejó E, **ros C, Olsson L (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32:46–53

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh L, Ghosh S (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipites. Bioresour Technol 100:3293–3297

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Bakonyi P, Periyasamy S, Kim S, Nemestóthy N, Bélafi-Bakó K (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737

    Article  CAS  Google Scholar 

  • Lamsal B, Yoo J, Brijwani K, Alavi S (2010) Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenergy 34:1703–1710

    Article  CAS  Google Scholar 

  • Lay C-H, Sen B, Chen C-C, Lin C-Y (2016) Continuous anaerobic hydrogen and methane production using water hyacinth feedstock. Arab J Sci Eng 41:1–9

    Article  Google Scholar 

  • Lee YY, Iyer PR, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:93–115

    CAS  Google Scholar 

  • Lewandowski I, Scurlock JM, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Li S, Zhang X, Andresen JM (2012) Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel 92:84–88

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Morales M, Arvesen A, Cherubini F (2021) Integrated process simulation for bioethanol production: effects of varying lignocellulosic feedstocks on technical performance. Bioresour Technol 328:124833

    Article  CAS  PubMed  Google Scholar 

  • Nlewem KC, Thrash ME (2010) Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresour Technol 101:5426–5430

    Article  CAS  PubMed  Google Scholar 

  • Oliveria MED, Vaughan BE, Rykiel EJ Jr (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 55:593–602

    Article  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microbial Technol 18:312–331

    Article  CAS  Google Scholar 

  • Pakarinen A, Zhang J, Brock T, Maijala P, Viikari L (2012) Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresour Technol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  • Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161:431–440

    Article  CAS  PubMed  Google Scholar 

  • Paul T, Baskaran D, Pakshirajan K, Pugazhenthi G, Rajamanickam R (2021) Bio-oil production by hydrothermal liquefaction of Rhodococcus opacus biomass utilizing refinery wastewater: biomass valorization and process optimization. Environ Technol Innov 21:101326

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Joshi H (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Rengsirikul K, Ishii Y, Kangvansaichol K, Sripichitt P, Punsuvon V, Vaithanomsat P et al (2013) Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of napiergrass (Pennisetum purpureum Schumach.) harvested 3-monthly in Central Thailand. J Sustain Bioenergy Syst 3:107–112

    Article  Google Scholar 

  • Ropars M, Marchal R, Pourquie J, Vandecasteele J (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part 1: Pretreatment procedures. Bioresour Technol 42:197–204

    Article  CAS  Google Scholar 

  • Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crop Prod 44:367–372

    Article  CAS  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  PubMed  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Schmitt E, Bura R, Gustafson R, Cooper J, Vajzovic A (2012) Converting lignocellulosic solid waste into ethanol for the state of Washington: an investigation of treatment technologies and environmental impacts. Bioresour Technol 104:400–409

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam R, Divya B, Panchamoorthy S, Manivasagan R, Natarajan R, Yasser V (2022) Production of ethanol from biomass—recent research, scientometric review and future perspectives. Fuel 317:123448

    Article  Google Scholar 

  • Sharma B, Larroche C, Dussap C-G (2020) Comprehensive assessment of 2G bioethanol production. Bioresour Technol 313:123630

    Article  CAS  PubMed  Google Scholar 

  • Shindell D, Smith CJ (2019) Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 573:408–411

    Article  CAS  PubMed  Google Scholar 

  • Song L, Yu H, Ma F, Zhang X (2013) Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. Bioresources 8:3802–3816

    Article  Google Scholar 

  • Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodeg 75:176–180

    Article  CAS  Google Scholar 

  • Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10:367–375

    Article  CAS  Google Scholar 

  • Usmani Z, Sharma M, Awasthi AK, Lukk T et al (2021) Lignocellulosic biorefineries: the current state of challenges and strategies for efficient commercialization. Renew Sust Energ Rev 148:111258

    Article  CAS  Google Scholar 

  • Van Walsum GP, Allen SG, Spencer MJ, Laser MS, Antal MJ Jr, Lynd LR (1996) Conversion of lignocellulosics pretreated with liquid hot water to ethanol. In: Seventeenth symposium on biotechnology for fuels and chemicals. Springer, pp 157–170

    Chapter  Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584

    Article  CAS  Google Scholar 

  • Wang R, Unrean P, Franzén CJ (2016) Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnol Biofuels Bioprod 9:88

    Article  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee Y (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Ding S-Y, Mielenz JR, Cui J-B, Elander RT, Laser M et al (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng:51–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumder, S., Thakur, P., Thakur, A. (2024). Conventional Methods and Technological Advancements of Ethanol Production from Lignocellulosic Biomass. In: Pal, D.B., Rai, A.K., Siddiqui, S. (eds) Sustainable Clean Energy Production Using Waste Biomass. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-97-0840-6_12

Download citation

Publish with us

Policies and ethics

Navigation