Valorizing Cellulosic Biomass Waste into Valuable Nano-biosorbents

  • Chapter
  • First Online:
Integrated Waste Management
  • 97 Accesses

Abstract

The surging global population and industrial expansion have ushered in the introduction of detrimental heavy metals and organic contaminants into the ecosystem. Adsorption-centric methodologies have emerged as a prevalent means of expunging pollutants from diverse sources, underpinned by their inherent simplicity, cost-efficiency, and wide applicability. Cellulose, an innate polysaccharide, encompasses a suite of advantageous attributes, possessing enhanced surface area, mechanical robustness, and the capacity for functionalization with moieties like carboxyl, amino, and sulfur groups. Driven by its versatility, eco-friendliness, widespread availability, and diverse applications, nanocellulose has generated significant interest from both scientific and industrial communities. This chapter delves into recent strides in producing and deploying nanocellulose from waste biomass and its utilization as biosorbent in waste water treatment. Distinct preparation techniques for NC-based composites, either cellulose nanocrystals or cellulose nanofibrils, produce materials with unique structures and properties that have been extensively explored in environmental remediation. Within this discourse, an all-encompassing exploration of different nanocellulose composites intertwines with the latest strides in environmental applications for waste water treatment. This comprehensive narrative underscores recent advancements and prognosticates the potential ecological dividends stemming from NC-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage 42(11):1357–1378

    Article  Google Scholar 

  2. Tuck CO et al (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699

    Article  CAS  Google Scholar 

  3. Tripathi N et al (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci 2(1):35

    Article  Google Scholar 

  4. Spiridon I et al (2016) New opportunities to valorize biomass wastes into green materials. J Clean Prod 133:235–242

    Article  CAS  Google Scholar 

  5. Fajobi M et al (2022) Investigation of physicochemical characteristics of selected lignocellulose biomass. Sci Rep 12(1):2918

    Article  CAS  Google Scholar 

  6. Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4(16):8271–8277

    Article  CAS  Google Scholar 

  7. Yu S et al (2021) Nanocellulose from various biomass wastes: its preparation and potential usages towards the high value-added products. Environ Sci Ecotechnol 5:100077

    Article  CAS  Google Scholar 

  8. Sartika D et al (2023) High yield production of nanocrystalline cellulose from corn cob through a chemical-mechanical treatment under mild conditions. Int J Biol Macromol 240:124327

    Article  CAS  Google Scholar 

  9. Zaini HM, et al (2023) Banana biomass waste: a prospective nanocellulose source and its potential application in food industry–a review. Heliyon

    Google Scholar 

  10. Lee K-Y (2018) Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press

    Google Scholar 

  11. Kumar S et al (2022) Contemporary nanocellulose-composites: a new paradigm for sensing applications. Carbohyd Polym 298:120052

    Article  CAS  Google Scholar 

  12. Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498

    Article  CAS  Google Scholar 

  13. Alka SK, Kumari P (2023) Sulfonatocalix[6]arene-decorated magnetite nanomaterials for the removal of organic pollutants from water. Int J Environ Sci Technol 20(4): 4467–4482

    Google Scholar 

  14. Chatterjee K et al (2023) Effective removal of nitrogenous pesticides from water using functionalized calix[4]arene-decorated magnetite nanoparticles. ChemistrySelect 8(3):e202203426

    Article  CAS  Google Scholar 

  15. Köse K, Mavlan M, Youngblood JP (2020) Applications and impact of nanocellulose based adsorbents. Cellulose 27(6):2967–2990

    Article  Google Scholar 

  16. Lee H, Hamid S, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J

    Google Scholar 

  17. Klemm D, et al (2009) Nanocellulose materials–different cellulose, different functionality. in Macromolecular symposia. Wiley Online Library

    Google Scholar 

  18. Marakana PG, Dey A, Saini B (2021) Isolation of nanocellulose from lignocellulosic biomass: synthesis, characterization, modification, and potential applications. J Environ Chem Eng 9(6):106606

    Article  CAS  Google Scholar 

  19. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160

    Article  Google Scholar 

  20. Zaki M et al (2021) Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material. Bioresour Technol Rep 16:100811

    Article  CAS  Google Scholar 

  21. Obi F, Ugwuishiwu B, Nwakaire J (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35(4):957–964-957–964

    Google Scholar 

  22. Nehra P, Chauhan RP (2022) Facile synthesis of nanocellulose from wheat straw as an agricultural waste. Iran Polym J 31(6):771–778

    Article  CAS  Google Scholar 

  23. Zhai S et al (2022) Nanocellulose: a promising nanomaterial for fabricating fluorescent composites. Cellulose 29(13):7011–7035

    Article  CAS  Google Scholar 

  24. Nasir M et al (2017) Nanocellulose: preparation methods and applications. Cellulose-reinforced nanofibre composites. Elsevier, pp 261–276

    Chapter  Google Scholar 

  25. de Amorim JDP et al (2020) Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett 18:851–869

    Article  Google Scholar 

  26. Gupta GK, Shukla P (2020) Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front Chem 8:601256

    Article  CAS  Google Scholar 

  27. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219

    Article  CAS  Google Scholar 

  28. Mahardika M et al (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2):28

    Article  Google Scholar 

  29. Nabeela K et al (2016) TEMPO-oxidized nanocellulose fiber-directed stable aqueous suspension of plasmonic flower-like silver nanoconstructs for ultra-trace detection of analytes. ACS Appl Mater Interfaces 8(43):29242–29251

    Article  CAS  Google Scholar 

  30. Ribeiro RSA et al (2019) Production of nanocellulose by enzymatic hydrolysis: trends and challenges. Eng Life Sci 19(4):279–291

    Article  CAS  Google Scholar 

  31. Bauli CR et al (2019) Cellulose nanostructures from wood waste with low input consumption. J Clean Prod 211:408–416

    Article  CAS  Google Scholar 

  32. **menes E et al (2021) Moving from residual lignocellulosic biomass into high-value products: outcomes from a long-term international cooperation. Biofuels, Bioprod Biorefin 15(2):563–573

    Article  CAS  Google Scholar 

  33. Liu X et al (2018) Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: energy consumption and nanofiber characteristics. Cellulose 25:7065–7078

    Article  CAS  Google Scholar 

  34. Squinca P et al (2020) Nanocellulose production in future biorefineries: an integrated approach using tailor-made enzymes. ACS Sustain Chem Eng 8(5):2277–2286

    Article  CAS  Google Scholar 

  35. Abba M, et al (2018) Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials. IET Nanobiotechnol 12(1):52–56

    Google Scholar 

  36. Jedrzejczak-Krzepkowska M et al (2016) Bacterial nanocellulose synthesis, recent findings. Bacterial nanocellulose. Elsevier, pp 19–46

    Chapter  Google Scholar 

  37. Chandana A et al (2022) Recent developments in bacterial nanocellulose production and its biomedical applications. J Polym Environ 30(10):4040–4067

    Article  CAS  Google Scholar 

  38. Sharma C, Bhardwaj NK, Pathak P (2022) Rotary disc bioreactor-based approach for bacterial nanocellulose production using Gluconacetobacter xylinus NCIM 2526 strain. Cellulose 29(13):7177–7191

    Article  CAS  Google Scholar 

  39. Barja F (2021) Bacterial nanocellulose production and biomedical applications. J Biomed Res 35(4):310

    Article  Google Scholar 

  40. Reshmy R et al (2021) Bacterial nanocellulose: engineering, production, and applications. Bioengineered 12(2):11463

    Article  Google Scholar 

  41. Sakovich GV et al (2017) Technological fundamentals of bacterial nanocellulose production from zero prime-cost feedstock. Dokl Biochem Biophys 477(1):357–359

    Article  CAS  Google Scholar 

  42. Ghasemlou M et al (2021) Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites. Prog Polym Sci 119:101418

    Article  CAS  Google Scholar 

  43. Teixeira LT et al (2021) Sulfated and carboxylated nanocellulose for Co+2 adsorption. J Market Res 15:434–447

    CAS  Google Scholar 

  44. Li W et al (2021) A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int J Biol Macromol 187:922–930

    Article  CAS  Google Scholar 

  45. ** L et al (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22(4):2443–2456

    Article  CAS  Google Scholar 

  46. Aoudi B, Boluk Y, Gamal El-Din M (2022) Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. Sci Total Environ 843:156903

    Google Scholar 

  47. Chu Y et al (2020) Dispersion properties of nanocellulose: a review. Carbohyd Polym 250:116892

    Article  CAS  Google Scholar 

  48. Ilyas R, et al (2019) Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. Nanocrystalline Mater 3–32

    Google Scholar 

  49. Qiao A et al (2021) Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohyd Polym 272:118471

    Article  CAS  Google Scholar 

  50. Lan G-X et al (2023) Multifunctional nanocellulose-based composites for potential environmental applications. Cellulose 30(1):39–60

    Article  CAS  Google Scholar 

  51. Anirudhan TS, Rejeena SR (2013) Poly(methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions. Sep Purif Technol 119:82–93

    Article  CAS  Google Scholar 

  52. Hassan HS et al (2017) Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination. J Taiwan Inst Chem Eng 78:307–316

    Article  CAS  Google Scholar 

  53. Fijoł N, Aguilar-Sánchez A, Mathew AP (2022) 3D-printable biopolymer-based materials for water treatment: a review. Chem Eng J 430:132964

    Article  Google Scholar 

  54. Häkkinen R, Abbott A (2019) Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility. Green Chem 21(17):4673–4682

    Article  Google Scholar 

  55. Jogunola O et al (2016) Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents. Carbohyd Polym 135:341–348

    Article  CAS  Google Scholar 

  56. Zhang X et al (2019) Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl Mater Interfaces 11(50):46714–46725

    Article  CAS  Google Scholar 

  57. Liu Y et al (2018) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohyd Polym 188:27–36

    Article  CAS  Google Scholar 

  58. Sun L et al (2021) Recent advances in hydrophobic modification of nanocellulose. Curr Org Chem 25(3):417–436

    Article  CAS  Google Scholar 

  59. Li J et al (2022) Conjoined-network induced highly tough hydrogels by using copolymer and nano-cellulose for oilfield water plugging. J Ind Eng Chem 109:161–172

    Article  CAS  Google Scholar 

  60. Yang J, Xu F, Han C-R (2017) Metal ion mediated cellulose nanofibrils transient network in covalently cross-linked hydrogels: mechanistic insight into morphology and dynamics. Biomacromol 18(3):1019–1028

    Article  CAS  Google Scholar 

  61. Way AE et al (2012) PH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1(8):1001–1006

    Article  CAS  Google Scholar 

  62. Yue Y et al (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohyd Polym 147:155–164

    Article  CAS  Google Scholar 

  63. Chinga-Carrasco G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29(3):423–432

    Article  Google Scholar 

  64. Kumar A et al (2020) Three-dimensional carbonaceous aerogels embedded with Rh-SrTiO3 for enhanced hydrogen evolution triggered by efficient charge transfer and light absorption. ACS Appl Energy Mater 3(12):12134–12147

    Article  CAS  Google Scholar 

  65. Gopakumar DA et al (2020) Nanocellulose based aerogels for varying engineering applications. Encycl Renew Sustain Mater 2:155–165

    Google Scholar 

  66. Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers 10(6):623

    Article  Google Scholar 

  67. Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7(35):19809–19815

    Article  CAS  Google Scholar 

  68. Korhonen JT et al (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816

    Article  CAS  Google Scholar 

  69. Zhou X et al (2021) Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J Colloid Interface Sci 581:299–306

    Article  CAS  Google Scholar 

  70. Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohyd Polym 126:199–207

    Article  CAS  Google Scholar 

  71. Wei J et al (2019) Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water. J Mater Sci 54(8):6709–6718

    Article  CAS  Google Scholar 

  72. Kumar A et al (2017) Recyclable, bifunctional composites of perovskite type N-CaTiO 3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Mater Chem Front 1(11):2391–2404

    Article  CAS  Google Scholar 

  73. Kumar A et al (2020) Interplay between mesocrystals of CaTiO3 and edge sulfur atom enriched MoS2 on reduced graphene oxide nanosheets: enhanced photocatalytic performance under sunlight irradiation. ChemPhotoChem 4(6):427–444

    Article  CAS  Google Scholar 

  74. Kumari N et al (2021) Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: adsorption and photocatalytic studies. Mater Lett 302:130455

    Article  CAS  Google Scholar 

  75. Akter M et al (2021) Cellulose-based hydrogels for wastewater treatment: a concise review. Gels 7(1):30

    Article  CAS  Google Scholar 

  76. Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc A: Math Phys Eng Sci 376(2112):20170047

    Article  Google Scholar 

  77. Li K et al (2022) Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites. J Mater Sci 57(17):8127–8138

    Article  CAS  Google Scholar 

  78. Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:616–632

    Article  CAS  Google Scholar 

  79. Lombardo S, Thielemans W (2019) Thermodynamics of adsorption on nanocellulose surfaces. Cellulose 26:249–279

    Article  CAS  Google Scholar 

  80. Wang Y et al (2021) Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohyd Polym 267:118233

    Article  CAS  Google Scholar 

  81. Musarurwa H, Tavengwa NT (2022) Advances in the application of chitosan-based metal organic frameworks as adsorbents for environmental remediation. Carbohyd Polym 283:119153

    Article  CAS  Google Scholar 

  82. Kumar A, Kumar S, Krishnan V (2019) Perovskite-based materials for photocatalytic environmental remediation. Nanophotocatalysis and environmental applications: materials and technology. pp 139–165

    Google Scholar 

  83. Kumar A, Kumar A, Krishnan V (2020) Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal 10(17):10253–10315

    Article  CAS  Google Scholar 

  84. Mishra S et al (2022) A review on heavy metal ion adsorption on synthetic microfiber surface in aquatic environments. Appl Biochem Biotechnol 194(10):4639–4654

    Article  CAS  Google Scholar 

  85. Sharma A et al (2022) A comprehensive review on the heavy metal removal for water remediation by the application of lignocellulosic biomass-derived nanocellulose. J Polym Environ 30(1):1–18

    Article  CAS  Google Scholar 

  86. Pandey A, Kalamdhad A, Sharma YC (2023) Recent advances of nanocellulose as biobased adsorbent for heavy metal ions removal: a sustainable approach integrating with waste management. Environmental nanotechnology, monitoring and management. p 100791

    Google Scholar 

  87. Abou-Zeid RE et al (2021) Removal of Cu (II), Pb (II), Mg (II), and Fe (II) by adsorption onto alginate/nanocellulose beads as bio-sorbent. J Renew Mater 9(4):601–613

    Article  CAS  Google Scholar 

  88. Alsaiari NS et al (2021) Synthesis, characterization and application of polypyrrole functionalized nanocellulose for the removal of Cr (VI) from aqueous solution. Polymers 13(21):3691

    Article  CAS  Google Scholar 

  89. Zhang J et al (2021) Microfibrillated cellulose reinforced poly (vinyl imidazole) cryogels for continuous removal of heavy metals. J Appl Polym Sci 138(48):51456

    Article  CAS  Google Scholar 

  90. Yu X et al (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943

    Article  CAS  Google Scholar 

  91. Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. Int J Green Nanotechnol 4(1):46–53

    Article  CAS  Google Scholar 

  92. Wang X et al (2019) Magnetic-controlled aerogels from carboxylated cellulose and MnFe 2 O 4 as a novel adsorbent for removal of Cu (II). Cellulose 26:5051–5063

    Article  CAS  Google Scholar 

  93. Kian LK et al (2022) PBAT/PBS blends membranes filled with nanocrystalline cellulose for heavy metal ion separation. J Polym Environ 30(12):5263–5273

    Article  CAS  Google Scholar 

  94. **ong Q, et al (2023) Polypyrrole-modified nanocellulose exhibits superior performance for Hg(II) adsorption. Polymers. 15. https://doi.org/10.3390/polym15122735.

  95. ** L et al (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Biores Technol 197:348–355

    Article  CAS  Google Scholar 

  96. Qiao H et al (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303

    Article  CAS  Google Scholar 

  97. Lu J et al (2016) Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb (II) from aqueous solution. Int J Biol Macromol 93:547–556

    Article  CAS  Google Scholar 

  98. Khawaja H et al (2021) Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int J Biol Macromol 167:23–34

    Article  CAS  Google Scholar 

  99. ** C et al (2020) The fabrication and arsenic removal performance of cellulose nanocrystal-containing absorbents based on the “bridge joint” effect of iron ions. Carbohyd Polym 237:116129

    Article  CAS  Google Scholar 

  100. Goswami R et al (2023) Development of nanocellulose-chitosan-based nanocomposite for adsorption of malachite green: isotherms and kinetic study. Water Air Soil Pollut 234(5):315

    Article  CAS  Google Scholar 

  101. Hou C et al (2020) Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohyd Polym 247:116731

    Article  CAS  Google Scholar 

  102. Song K et al (2017) Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution. Biores Technol 232:254–262

    Article  CAS  Google Scholar 

  103. Mo L et al (2021) Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. J Hazard Mater 415:125612

    Article  CAS  Google Scholar 

  104. Hong H-J et al (2021) Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu2+) from wastewater. Chemosphere 278:130288

    Article  CAS  Google Scholar 

  105. Vijayan JG et al (2023) Synthesis of bagasse nanocellulose-filled composite polyurethane xerogel for the efficient adsorption of Rhodamine-B dye from aqueous solution: investigation of adsorption parameters. Eur Phys J E 46(4):23

    Article  CAS  Google Scholar 

  106. Nguyen VT et al (2023) Antibiotics tetracycline adsorption and flame-retardant capacity of eco-friendly aerogel-based nanocellulose, graphene oxide, polyvinyl alcohol, and sodium bicarbonate. J Environ Chem Eng 11(2):109523

    Article  CAS  Google Scholar 

  107. Liu X et al (2018) Hydrothermal synthesis of cellulose nanocrystal-grafted-acrylic acid aerogels with superabsorbent properties. Polymers 10(10):1168

    Article  Google Scholar 

  108. Mo L et al (2022) Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu (II). Chemosphere 291:132887

    Article  CAS  Google Scholar 

  109. Rong N et al (2021) Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep Purif Technol 274:119120

    Article  CAS  Google Scholar 

  110. Luo M et al (2021) Super-assembled highly compressible and flexible cellulose aerogels for methylene blue removal from water. Chin Chem Lett 32(6):2091–2096

    Article  CAS  Google Scholar 

  111. Seo JY et al (2021) Robust nanocellulose/metal–organic framework aerogel composites: superior performance for static and continuous disposal of chemical warfare agent simulants. ACS Appl Mater Interfaces 13(28):33516–33523

    Article  CAS  Google Scholar 

  112. Hu D et al (2019) Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J Hazard Mater 369:483–493

    Article  CAS  Google Scholar 

  113. Hu Z-H et al (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb (II) from aqueous solution. Int J Biol Macromol 108:149–157

    Article  CAS  Google Scholar 

  114. Xu X, Ouyang X-K, Yang L-Y (2021) Adsorption of Pb (II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J Mol Liq 322:114523

    Article  CAS  Google Scholar 

  115. Melo BC et al (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohyd Polym 181:358–367

    Article  CAS  Google Scholar 

  116. Putro JN et al (2019) Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal. Environ Nanotechnol Monit Manag 12:100260

    Google Scholar 

  117. Zhao Q et al (2022) Hierarchical porous nanocellulose aerogels loaded with metal-organic framework particles for the adsorption application of heterocyclic aromatic amines. ACS Appl Mater Interfaces 14(25):29131–29143

    Article  CAS  Google Scholar 

  118. Huang X et al (2023) A comparative study of mechanism and performance of anionic and cationic dialdehyde nanocelluloses for dye adsorption and separation. ACS Omega 8(9):8634–8649

    Article  CAS  Google Scholar 

  119. Zeng J et al (2022) Ultrahigh adsorption of toxic substances from cigarette smoke using nanocellulose-SiO2 hybrid aerogels. ACS Appl Polym Mater 4(2):1173–1182

    Article  CAS  Google Scholar 

  120. Lorevice MV et al (2023) Designing 3D fractal morphology of eco-friendly nanocellulose-based composite aerogels for water remediation. Chem Eng J 462:142166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Kumar, A., Thakur, A., Kumari, P. (2024). Valorizing Cellulosic Biomass Waste into Valuable Nano-biosorbents. In: Gupta, A., Kumar, R., Kumar, V. (eds) Integrated Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0823-9_12

Download citation

Publish with us

Policies and ethics

Navigation