Transcriptomics

  • Chapter
  • First Online:
Trends in Plant Biotechnology

Abstract

Transcriptomics has become an integral approach in all areas of plant sciences. Advances in plant transcriptomics and new tools and techniques that are taking the ground to excel in this field are the emerging horizons of life sciences. An introduction to plant transcriptomics is provided here, along with a description of the fundamental procedures, tools, and techniques employed in transcriptome analysis. This chapter covers competitive transcriptome analysis, which compares how homologous genes in different species are expressed and the potential of functional genomics and gene regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo, R. M., Avico, E. H., González, S., Salvador, A. R., Rivarola, M., Paniego, N., Nunes-Nesi, A., Ruiz, O. A., & Sansberro, P. A. (2019). Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves. Planta, 250(2), 445–462.

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., **ao, H., Merril, C. R., Wu, A., Olde, B., Moreno, R. F., & Venter, J. C. (1991). Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 252(5013), 1651–1656.

    Article  CAS  PubMed  Google Scholar 

  • Agnieszka Kisiel, & Ski, J. P. (2005). Expressed sequence tags and their application for plant. Research, 27(2), 157–161. https://doi.org/10.1007/s11738-005-0019-1

    Article  Google Scholar 

  • Ando, K., Carr, K. M., & Grumet, R. (2012). Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics, 13, 518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam, S., Thakur, V., Ruperao, P., Shah, T., Balaji, J., Amindala, B., Farmer, A. D., Studholme, D. J., May, G. D., Edwards, D., Jones, J. D. G., & Varshney, R. K. (2012). Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. American Journal of Botany, 99, 186–192.

    Article  CAS  PubMed  Google Scholar 

  • Bao, J., Lee, S., Chen, C., Zhang, X., Zhang, Y., Liu, S., Clark, T., Wang, J., Cao, M., Yang, H., Wang, S. M., & Yu, J. (2005). Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiology., 138, 1216–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, Y., Dharmawardhana, P., Mockler, T. C., & Strauss, S. H. (2009). Genome scale transcriptome analysis of shoot organogenesis in Populus. BMC Plant Biology, 9(1), 1–15.

    Article  Google Scholar 

  • Bhandari, M. S., Meena, R. K., Shamoon, A., Saroj, S., & Pandey, S. (2020). First de novo genome specific development, characterization and validation of simple sequence repeat (SSR) markers in Genus Salvadora. Molecular Biology Reports, 47, 6997–7008. https://doi.org/10.1007/s11033-020-05758-z

    Article  CAS  PubMed  Google Scholar 

  • Bonnet, E., Wuyts, J., Rouzé, P., & Van de Peer, Y. (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proceedings of the National Academy of Sciences of the United States of America, 101, 11511–11516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botchkareva, N. V. (2017). The molecular revolution in cutaneous biology: Noncoding RNAs: New molecular players in dermatology and cutaneous biology. Journal of Investigative Dermatology, 137(5), e105–e111.

    Article  CAS  PubMed  Google Scholar 

  • Buck, M. J., & Lieb, J. D. (2004). ChIP-chip: Considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 84, 349–360.

    Article  Google Scholar 

  • Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. Journal of Molecular Endocrinology, 29, 23–39.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y. F., Wang, J. H., Zhang, L., Song, J., Peng, L. C., & Zhang, S. B. (2019). Physiological and transcriptomic analysis highlight key metabolic pathways in relation to drought tolerance in Rhododendron delavayi. Physiology and Molecular Biology of Plants, 25(4), 991–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., & Manley, J. L. (2009). Mechanisms of alternative splicing regulation: Insights from molecular and genomics approaches. Nature Reviews Molecular Cell Biology, 10(11), 741–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Zeng, B., Zhang, M., **e, S., Wang, G., Hauck, A., et al. (2014). Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology., 166, 252–264. https://doi.org/10.1104/pp.114.240689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomczynski, P., & Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: Twenty-something years on. Nature Protocols, 1(2), 581–585.

    Article  CAS  PubMed  Google Scholar 

  • Cortés, A. J., Chavarro, M. C., & Blair, M. W. (2011). SNP marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 123, 827–845.

    Article  PubMed  Google Scholar 

  • Cui, G., Chai, H., Yin, H., Yang, M., Hu, G., Guo, M., Guo, M., Yi, R., & Zhang, P. (2019). Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC Plant Biology, 19(1), 1–16.

    Article  Google Scholar 

  • Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C., & Huang, T. H. M. (2008). The functional consequences of alternative promoter use in mammalian genomes. Trends in Genetics, 24(4), 167–177.

    Article  CAS  PubMed  Google Scholar 

  • De Vos, M., Van Oosten, V. R., Van Poecke, R. M., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., Buchala, A. J., Métraux, J.-P., Van Loon, L. C., Dicke, M., & Pieterse, C. M. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions, 18(9), 923–937.

    Article  PubMed  Google Scholar 

  • Ding, Z., Weissmann, S., Wang, M., Du, B., Huang, L., Wang, L., Tu, X., Zhong, S., Myers, C., Brutnell, T. P., et al. (2015). Identification of photosynthesis-associated c4 candidate genes through comparative leaf gradient transcriptome in multiple lineages of c3 and c4 species. PLoS One, 10(10), e0140629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dries, R., Chen, J., Del Rossi, N., Khan, M. M., Sistig, A., & Yuan, G. C. (2021). Advances in spatial transcriptomic data analysis. Genome Research, 31(10), 1706–1718.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebenezer, T. E., Zoltner, M., Burrell, A., Nanakova, A., Vanclová, A. M. G. N., Prasad, B., et al. (2019). Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology., 17, 11. https://doi.org/10.1186/s12915-019-0626-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Eddy, S. R. (2001). Non–coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2(12), 919–929.

    Article  CAS  PubMed  Google Scholar 

  • Femino, A. M., Fay, F. S., Fogarty, K., & Singer, R. H. (1998). Visualization of single RNA transcripts in situ. Science, 280(5363), 585–590.

    Article  CAS  PubMed  Google Scholar 

  • Fracasso, A., Magnanini, E., Marocco, A., & Amaducci, S. (2017). Real-time determination of photosynthesis,transpiration, water-use efficiency and gene expression of two sorghum bicolor (moench) genotypes subjected to drydown. Frontiers in Plant Science, 8, 264303.

    Article  Google Scholar 

  • Gandotra, N., Coughlan, S. J., & Nelson, T. (2013). The Arabidopsis leaf provascular cell transcriptome is enriched in genes with roles in vein patterning. The Plant Journal, 74(1), 48–58.

    Article  CAS  PubMed  Google Scholar 

  • Garnica, D. P., Upadhyaya, N. M., Dodds, P. N., & Rathjen, J. P. (2013). Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS One, 8, e67150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacomello, S. (2021). A new era for plant science: Spatial single-cell transcriptomics. Current Opinion in Plant Biology, 60, 102041.

    Article  CAS  PubMed  Google Scholar 

  • Giacomello, S., & Lundeberg, J. (2018). Preparation of plant tissue to enable Spatial Transcriptomics profiling using barcoded microarrays. Nature Protocols, 13(11), 2425–2446. https://doi.org/10.1038/s41596-018-0046-1

    Article  CAS  PubMed  Google Scholar 

  • Ginzinger, D. G. (2002). Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Experimental Hematology, 30, 503–512.

    Article  CAS  PubMed  Google Scholar 

  • Gong, S., Hao, Z., Meng, J., Liu, D., Wei, M., & Tao, J. (2015). Digital gene expression analysis to screen disease resistance-relevant genes from leaves of herbaceous peony (paeonia lactiflora pall.) infected by botrytis cinerea. PLoS One, 10(7), e0133305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goralski, M., Sobieszczanska, P., Obrepalska-Steplowska, A., Swiercz, A., Zmienko, A., & Figlerowicz, M. (2016). A gene expression microarray for Nicotiana benthamiana based on de novo transcriptome sequence assembly. Plant Methods, 12(1), 1–10.

    Article  Google Scholar 

  • Guo, X., Li, Y., Li, C., Luo, H., Wang, L., Qian, J., Luo, X., **ang, L., Song, J., Sun, C., Haibin, X., Yao, H., & Chen, S. (2013). Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene, 527(1), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W. L., Chen, B. H., Chen, X. J., Guo, Y. Y., Yang, H. L., Li, X. Z., & Wang, G. Y. (2018). Transcriptome profiling of pumpkin (Cucurbita moschata Duch.) leaves infected with powdery mildew. PLoS One, 13(1), e0190175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, H., Pu, X., Jia, H., Zhou, Y., Ye, G., Yang, Y., Na, T., & Wang, J. (2022). Transcriptome analysis reveals multiple effects of nitrogen accumulation and metabolism in the roots, shoots, and leaves of potato (Solanum tuberosum L.). BMC Plant Biology, 22(1), 1–12.

    Article  Google Scholar 

  • Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., Huarte, M., Zuk, O., Carey, B. W., Cassady, J. P., Cabili, M. N., Jaenisch, R., Mikkelsen, T. S., Jacks, T., Hacohen, N., Bernstein, B. E., Kellis, M., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque, A., Engel, J., Teichmann, S. A., & Lönnberg, T. (2017). A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Medicine, 9(1), 1–12.

    Article  Google Scholar 

  • Hasan, M. M. U., Ma, F., Islam, F., Sajid, M., Prodhan, Z. H., Li, F., Shen, H., Chen, Y., & Wang, X. (2019). Comparative transcriptomic analysis of biological process and key pathway in three cotton (Gossypium spp.) species under drought stress. International Journal of Molecular Sciences, 20(9), 2076.

    Article  PubMed  PubMed Central  Google Scholar 

  • He, F., Long, R., Wei, C., Zhang, Y., Li, M., Kang, J., Yang, Q., Wang, Z., & Chen, L. (2022). Genome-wide identification, phylogeny and expression analysis of the SPL gene family and its important role in salt stress in Medicago sativa L. BMC Plant Biology, 22(1), 1–13.

    Article  CAS  Google Scholar 

  • Hou, L., Zhang, X., Li, X., Jia, J., Yang, H., Zhan, H., Qiao, L., Guo, H., & Chang, Z. (2015). Map** of powdery mildew resistance gene pmCH89 in a putative wheat-Thinopyrum intermedium introgression line. International Journal of Molecular Sciences, 16(8), 17231–17244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, Z., Yin, J., Lu, Y., Song, J., Wang, S., Wei, S., Liu, Z., Zhang, Y., & Fang, Z. (2019). Transcriptomic analysis reveals the temporal and spatial changes in physiological process and gene expression in common buckwheat (Fagopyrum esculentum Moench) grown under drought stress. Agronomy, 9(10), 569.

    Article  CAS  Google Scholar 

  • Hu, R., Yu, C., Wang, X., Jia, C., Pei, S., He, K., et al. (2017). De novo transcriptome analysis of Miscanthus Lutarioriparius identifies candidate genes in rhizome development. Frontiers in Plant Science, 8, 492. https://doi.org/10.3389/fpls.2017.00492

    Article  PubMed  PubMed Central  Google Scholar 

  • IÅ¡tvánek, J., DluhoÅ¡ová, J., DluhoÅ¡, P., Pátková, L., NedÄ›lník, J., & Řepková, J. (2017). Gene classification and mining of molecular markers useful in red clover (Trifolium pratense) breeding. Frontiers in Plant Science, 8, 367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacquier, A. (2009). The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs. Nature Reviews Genetics, 10(12), 833–844.

    Article  CAS  PubMed  Google Scholar 

  • Jazayeri, S. M., Melgarejo Munoz, L. M., & Romero, H. M. (2015). Rna-seq: A glance at technologies and methodologies. Acta Biológica Colombiana, 20(2), 23–35.

    Google Scholar 

  • Jenkitkonchai, J., Marriott, P., Yang, W., Sriden, N., Jung, J. H., Wigge, P. A., & Charoensawan, V. (2021). Exploring PIF4’s contribution to early flowering in plants under daily variable temperature and its tissue-specific flowering gene network. Plant Direct, 5(7), e339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, D., Li, G., Chen, G., Lei, J., Cao, B., & Chen, C. (2021). Genome-wide identification and expression profiling of 2OGD superfamily genes from three Brassica plants. Genes, 12(9), 1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao, X., Zhao, X., Zhou, X. R., Green, A. G., Fan, Y., Wang, L., Singh, S. P., & Liu, Q. (2013). Comparative transcriptomic analysis of develo** cotton cotyledons and embryo axis. PloS One, 8(8), e71756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampa, D., Cheng, J., Kapranov, P., Yamanaka, M., Brubaker, S., Cawley, S., Drenkow, J., Piccolboni, A., Bekiranov, S., Helt, G., Tammana, H., & Gingeras, T. R. (2004). Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research, 14(3), 331–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor, M., Mawal, P., Sharma, V., & Gupta, R. C. (2020). Analysis of genetic diversity and population structure in Asparagus species using SSR markers. Journal of Genetic Engineering and Biotechnology, 18, 50. https://doi.org/10.1186/s43141-020-00065-3

    Article  PubMed Central  Google Scholar 

  • Klein, D. (2002). Quantification using real-time PCR technology: Applications and limitations. Trends in Molecular Medicine, 8, 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, E. M., & Li, W. (2017). A transcriptomics and comparative genomics analysis Reveals gene families with a role in body plan complexity. Frontiers in Plant Science, 8, 869.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krost, C., Petersen, R., & Schmidt, E. R. (2012). The transcriptomes of columnar and standard type apple trees (Malus x domestica)—a comparative study. Gene, 498(2), 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Lacape, J. M., Claverie, M., Vidal, R. O., Carazzolle, M. F., Guimaraes Pereira, G. A., Ruiz, M., Pré, M., Llewellyn, D., Al-Ghazi, Y., Jacobs, J., Dereeper, A., Huguet, S., Giband, M., & Lanaud, C. (2012). Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One, 7(11), e48855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, D. T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Ham, L. H., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. P. (2012). Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PloS One, 7(11), e49522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Heath, L. S., Grene, R., & Li, S. (2019). Comparing time series transcriptome data between plants using a network module finding algorithm. Plant Methods, 15(1), 1–16.

    Article  Google Scholar 

  • Li, J., Zhu, L., Hull, J. J., Liang, S., Daniell, H., **, S., & Zhang, X. (2016). Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnology Journal, 14(10), 1956–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Liu, Z., Chen, G., Qanmber, G., Lu, L., Zhang, J., Ma, S., Yang, Z., & Li, F. (2021). Identification and analysis of GhEXO gene family indicated that GhEXO7_At promotes plant growth and development through brassinosteroid signaling in cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 1840.

    Google Scholar 

  • Lindberg, J., & Lundeberg, J. (2010). The plasticity of the mammalian transcriptome. Genomics, 95(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Li, W., Zheng, P., Xu, T., Chen, L., Liu, D., Hussain, S., & Teng, Y. (2012). Transcriptomic analysis of ‘Suli’pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics, 13(1), 1–18.

    Article  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lu, T., Cui, L., Zhou, Y., Zhu, Q., Fan, D., Gong, H., Zhao, Q., Zhou, C., Zhao, Y., Lu, D., Luo, J., Wang, Y., Tian, Q., Feng, Q., Huang, T., & Han, B. (2015). Transcriptome-wide investigation of circular RNAs in rice. RNA, 21, 2076–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, C. Z. Q., & Luo, Z. (2014). Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol. BMC Genomics, 15, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan, M. M., Goyal, E., Singh, A. K., Gaikwad, K., & Kanika, K. (2017). Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. Plant Physiology and Biochemistry, 121, 128–139.

    Article  CAS  PubMed  Google Scholar 

  • Manechini, J. R. V., Santos, P. H. D. S., Romanel, E., Brito, M. D. S., Scarpari, M. S., Jackson, S., & LR & Vicentini, R. (2021). Transcriptomic analysis of changes in gene expression during flowering induction in sugarcane under controlled photoperiodic conditions. Frontiers in Plant Science, 808.

    Google Scholar 

  • Mantione, K. J., Kream, R. M., Kuzelova, H., Ptacek, R., Raboch, J., Samuel, J. M., & Stefano, G. B. (2014). Comparing bioinformatic gene expression profiling methods: Microarray and RNA-Seq. Medical Science Monitor Basic Research, 20, 138.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGettigan, P. A. (2013). Transcriptomics in the RNA-seq era. Current Opinion in Chemical Biology, 17(1), 4–11.

    Article  CAS  PubMed  Google Scholar 

  • Mikkilineni, V., Mitra, R. D., Merritt, J., DiTonno, J. R., Church, G. M., Ogunnaike, B., & Edwards, J. S. (2004). Digital quantitative measurements of gene expression. Biotechnology and Bioengineering, 86, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genoty** using restriction site associated DNA (RAD) markers. Genome Research, 17, 240–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra, P., Pandey, A., Tiwari, M., Chandrashekar, K., Sidhu, O. P., Asif, M. H., Chakrabarty, D., Singh, P. K., Trivedi, P. K., Nath, P., & Tuli, R. (2010). Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiology, 152(4), 2258–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra, R. D., Shendure, J., Olejnik, J., Edyta Krzymanska, O., & Church, G. M. (2003). Fluorescent in situ sequencing on polymerase colonies. Analytical Biochemistry, 320, 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Morgil, H., Tardu, M., Cevahir, G., & Kavakli, Ä°. H. (2019). Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short-and long-term water deficits. Functional & Integrative Genomics, 19(5), 715–727.

    Article  CAS  Google Scholar 

  • Moses, L., & Pachter, L. (2022). Museum of spatial transcriptomics. Nature Methods, 19(5), 534–546.

    Article  CAS  PubMed  Google Scholar 

  • Movahedi, S., Van de Peer, Y., & Vandepoele, K. (2011). Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. Plant Physiology, 156(3), 1316–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320(5881), 1344–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, P., Misra, A., Singh, A., Shukla, A. K., Gupta, M. M., Gupta, A. K., Gupta, V., Khanuja, S. P., & Shasany, A. K. (2013). Differentially expressed genes during contrasting growth stages of Artemisia annua for artemisinin content. PLoS One, 8(4), e60375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netotea, S., Sundell, D., Street, N. R., & Hvidsten, T. R. (2014). ComPlEx: Conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genomics, 15(1), 1–17.

    Article  Google Scholar 

  • Nigam, D., Kavita, P., Tripathi, R. K., Ranjan, A., Goel, R., Asif, M., Shukla, A., Singh, G., Rana, D., & Sawant, S. V. (2014). Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. Plant Biotechnology Journal, 12, 204–218.

    Article  CAS  PubMed  Google Scholar 

  • Okoniewski, M. J., & Miller, C. J. (2006). Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics, 7(1), 1–14.

    Article  Google Scholar 

  • Pal, T., Padhan, J. K., Kumar, P., Sood, H., & Chauhan, R. S. (2018). Comparative transcriptomics uncovers differences in photoautotrophic versus photoheterotrophic modes of nutrition in relation to secondary metabolites biosynthesis in Swertia chirayita. Molecular Biology Reports, 45, 77–98. https://doi.org/10.1007/s11033-017-4135-y

    Article  CAS  PubMed  Google Scholar 

  • Parkinson, J. (2009). Methods in molecular biology. Expressed sequence tags (ESTs) volume 533 || expressed sequence tags: An overview. pp. 1–12. https://doi.org/10.1007/978-1-60327-136-3_1

  • Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY transcription factors: Molecular regulation and stress responses in plants. Frontiers in Plant Science, 7, 760. https://doi.org/10.3389/fpls.2016.00760

    Article  PubMed  PubMed Central  Google Scholar 

  • Provart, N. J., Alonso, J., Assmann, S. M., Bergmann, D., Brady, S. M., Brkljacic, J., Browse, J., Chapple, C., Colot, V., Cutler, S., Dangl, J., Ehrhardt, D., Friesner, J. D., Frommer, W. B., Grotewold, E., Meyerowitz, E., Nemhauser, J., et al. (2016). 50 years of Arabidopsis research: Highlights and future directions. New Phytologist, 209(3), 921–944.

    Article  CAS  PubMed  Google Scholar 

  • Pucker, B. (2022). Automatic identification and annotation of MYB gene family members in plants. BMC Genomics, 23(1), 1–11.

    Article  Google Scholar 

  • Pushkarev, D., Neff, N. F., & Quake, S. R. (2009). Single-molecule sequencing of an individual human genome. Nature Biotechnology, 27(9), 847–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puvvala, S. S., Muddanuru, T., Thangella, P. A., Kumar, O. A., Chakravartty, N., Vettath, V. K., Mohan Katta, A. V. S. K., Lekkala, S. P., Kuriakose, B., Gupta, S., Mulpuri, S., & Lachagari, V. B. R. (2019). Deciphering the transcriptomic insight during organogenesis in Castor (Ricinus communis L.), Jatropha (Jatropha curcas L.) and Sunflower (Helianthus annuus L.). 3 Biotech, 9(11), 1–17.

    Article  Google Scholar 

  • Qian, Y., Ren, Q., Zhang, J., & Chen, L. (2019). Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Gene, 692, 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Qin, D., et al. (2008). Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics., 9, 432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruprecht, C., Mendrinna, A., Tohge, T., Sampathkumar, A., Klie, S., Fernie, A. R., Nikoloski, Z., Persson, S., & Mutwil, M. (2016). FamNet: A framework to identify multiplied modules driving pathway expansion in plants. Plant Physiology, 170(3), 1878–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Sevilla, J. F., Vallarino, J. G., Osorio, S., Bombarely, A., Posé, D., Merchante, C., et al. (2017). Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria×ananassa). Scientific Reports, 7, 13737.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, R., Agarwal, P., Ray, S., Deveshwar, P., Sharma, P., Sharma, N., Nijhawan, A., Jain, M., Singh, A. K., Singh, V. P., Khurana, J. P., Tyagi, A. K., & Kapoor, S. (2012). Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Functional & Integrative Genomics, 12(2), 229–248.

    Article  CAS  Google Scholar 

  • Shen, C., Li, D., He, R., Fang, Z., **a, Y., Gao, J., Shen, H., & Cao, M. (2014). Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 57(6), 337–348.

    Article  CAS  Google Scholar 

  • Slavokhotova, A., Korostyleva, T., Shelenkov, A., Pukhalskiy, V., Korottseva, I., Slezina, M., Istomina, E., & Odintsova, T. (2021). Transcriptomic analysis of genes involved in plant defense response to the cucumber green mottle mosaic virus infection. Life, 11(10), 1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnhammer, E. L., Gabaldón, T., Sousa da Silva, A. W., Martin, M., Robinson-Rechavi, M., Boeckmann, B., Thomas, P. D., Dessimoz, C., & Quest for Orthologs Consortium. (2014). Big data and other challenges in the quest for orthologs. Bioinformatics, 30(21), 2993–2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasulu, N., Sopory, S. K., & Kavi Kishor, P. B. (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene., 388, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Stelpflug, S. C., Sekhon, R. S., Vaillancourt, B., Hirsch, C. N., Buell, C. R., de Leon, N., et al. (2016). An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. The Plant Genome., 9, 1–16.

    Article  CAS  Google Scholar 

  • Sweetman, C., WonG, D. C. J., Ford, C. M., & Drew, D. P. (2012). Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics, 13, 691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taft, R. J., Pheasant, M., & Mattick, J. S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays, 29(3), 288–299.

    Article  CAS  PubMed  Google Scholar 

  • Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., .Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, & Surani, M. A. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 6(5), 377-382.

    Article  CAS  PubMed  Google Scholar 

  • Tang, S., Liang, H., Yan, D., Zhao, Y., Han, X., Carlson, J. E., **a, X., & Yin, W. (2013). Populus euphratica: The transcriptomic response to drought stress. Plant Molecular Biology, 83, 539–557.

    Article  CAS  PubMed  Google Scholar 

  • Tang, B., **e, L., Yang, H., Li, X., Chen, Y., Zou, X., Liu, F., & Dai, X. (2022). Analysis of the expression and function of key genes in pepper under low-temperature stress. Frontiers in Plant Science, 1378.

    Google Scholar 

  • Trebbi, D., Maccaferri, M., de Heer, P., Sorensen, A., Giuliani, S., Salvi, S., Sanguineti, M. C., Massi, A., van der Vossen, E. A. G., & Tuberosa, R. (2011). High-throughput SNP discovery and genoty** in durum wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 123, 555–569.

    Article  PubMed  Google Scholar 

  • Ullah, A., Manghwar, H., Shaban, M., Khan, A., Akbar, A., Ali, U., et al. (2018). Phytohormones enhanced drought tolerance in plants: A co** strategy. Environmental Science and Pollution Research, 25, 33103–33118. https://doi.org/10.1007/s11356-018-3364-5

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., & Thermes, C. (2018). The third revolution in sequencing technology. Trends in Genetics, 34(9), 666–681.

    Article  PubMed  Google Scholar 

  • Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270(5235), 484–487.

    Article  CAS  PubMed  Google Scholar 

  • Vercruysse, J., Van Bel, M., Osuna-Cruz, C. M., Kulkarni, S. R., Storme, V., Nelissen, H., Gonzalez, N., Inzé, D., & Vandepoele, K. (2020). Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth. Plant Biotechnology Journal, 18(2), 553–567.

    Article  CAS  PubMed  Google Scholar 

  • Vimolmangkang, S., Zheng, D., Han, Y., Khan, M. A., Soria-Guerra, R. E., & Korban, S. S. (2014). Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation. Gene, 534(1), 78–87.

    Article  CAS  PubMed  Google Scholar 

  • Wan, X., & Li, Z. (2019). Plant comparative transcriptomics reveals functional mechanisms and gene regulatory networks involved in anther development and male sterility. In Transcriptome analysis. IntechOpen.

    Google Scholar 

  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Li, L., Li, H., Liu, L., Zhang, Y., Gao, J., & Wang, X. (2012). Transcriptome analysis of rosette and folding leaves in Chinese cabbage using high-throughput RNA sequencing. Genomics, 99(5), 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Jiang, B., Liu, W., Lin, Y. E., Liang, Z., He, X., & Peng, Q. (2019). Transcriptome analyses provide novel Insights into heat stress responses in Chieh-Qua (Benincasa hispida Cogn. var. Chieh-Qua How). International Journal of Molecular Sciences, 20(4), 883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, T., Qin, Z., Zhou, X., Feng, Z., & Du, Y. (2010). Transcriptome profile analysis of floral sex determination in cucumber. Journal of Plant Physiology, 167(11), 905–913.

    Article  CAS  PubMed  Google Scholar 

  • **ong, H., Guo, H., **e, Y., Zhao, L., Gu, J., Zhao, S., Li, J., & Liu, L. (2017). RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Scientific Reports, 7(1), 1–13.

    Google Scholar 

  • Xu, L., Wang, Y., Zhai, L., Xu, Y., Wang, L., Zhu, X., Gong, Y., Yu, R., Limera, C., & Liu, L. (2013). Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. Journal of Experimental Botany, 64, 4271–4287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakawa, H., Hirose, T., Kuroda, M., & Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology., 144, 258–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Yu, Q., Yang, Y., Su, Y., Ahmad, W., Guo, J., Gao, S., Xu, L., & Que, Y. (2018). Identification of cold-related miRNAs in sugarcane by small RNA sequencing and functional analysis of a cold inducible ScmiR393 to cold stress. Environmental and Experimental Botany, 155, 464–476.

    Article  CAS  Google Scholar 

  • Yates, S. A., Swain, M. T., Hegarty, M. J., Chernukin, I., Lowe, M., Allison, G. G., Ruttink, T., Abberton, M. T., Jenkins, G., & Skøt, L. (2014). De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics, 15, 453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi, F., Gu, W., Chen, J., Song, N., Gao, X., Zhang, X., et al. (2019). High temporal-resolution transcriptome landscape of early maize seed development. Plant Cell, 31, 974–992. https://doi.org/10.1105/tpc.18.00961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Guo, G., Lv, D., Hu, Y., Li, J., Li, X., & Yan, Y. (2014). Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biology, 14(1), 1–19.

    Article  Google Scholar 

  • Zhang, T. Q., Xu, Z. G., Shang, G. D., & Wang, J. W. (2019a). A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Molecular Plant, 12(5), 648–660.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Gao, X., Li, J., Gong, X., Yang, P., Gao, J., Wang, P., & Feng, B. (2019b). Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC Plant Biology, 19(1), 1–17.

    Article  Google Scholar 

  • Zhang, Z., Ali, S., Zhang, T., Wang, W., & **e, L. (2020). Identification, evolutionary and expression analysis of PYL-PP2C-SnRK2s gene families in soybean. Plants, 9(10), 1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., He, Y., Li, L., Liu, H., & Hong, G. (2021). Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in Arabidopsis stamen. Journal of Experimental Botany, 72(12), 4319–4332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W., He, X., Hoadley, K. A., Parker, J. S., Hayes, D. N., & Perou, C. M. (2014). Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics, 15(1), 1–11.

    Article  Google Scholar 

  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326–9331.

    Article  CAS  Google Scholar 

  • Zhao, T., Specht, C. D., Dong, Z., Ye, Y., Liu, H., & Liao, J. (2020). Transcriptome analyses provide insights into development of the Zingiber zerumbet flower, revealing potential genes related to floral organ formation and patterning. Plant Growth Regulation, 90, 331–345. https://doi.org/10.1007/s10725-020-00575-7

    Article  CAS  Google Scholar 

  • Zhong, S., Fei, Z., Chen, Y. R., Vrebalov, J., Mcquinn, R., Gapper, N., & Giovannoni, J. (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 31(2), 154–159.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Shendure, J., Mitra, R. D., & Church, G. M. (2003). Single molecule profiling of alternative pre-mRNA splicing. Science, 301, 836–838.

    Article  CAS  PubMed  Google Scholar 

  • Zipfel, C., Kunze, G., Chinchilla, D., et al. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125, 749–760.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cetinel, A.H.S., Ali, H.M., Ali, S. (2024). Transcriptomics. In: Ijaz, S., Ul Haq, I., Mohamed Ali, H. (eds) Trends in Plant Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-97-0814-7_4

Download citation

Publish with us

Policies and ethics

Navigation