Threats, Challenges, and Conservation Strategies of Himalayan Faunal Biodiversity

  • Chapter
  • First Online:
Role of Science and Technology for Sustainable Future
  • 33 Accesses

Abstract

The Himalayan region is known for its unique and diverse faunal biodiversity, comprising of several species of mammals, birds, reptiles, and amphibians. However, this biodiversity is facing significant threats and challenges due to various anthropogenic activities and natural phenomena. This abstract will highlight the threats, challenges, and conservation strategies of Himalayan faunal biodiversity. The main threats to the Himalayan faunal biodiversity are habitat loss and fragmentation, overexploitation, poaching, climate change, and natural disasters. The expansion of human activities, such as agriculture, urbanization, and infrastructure development, has led to the loss and fragmentation of habitats, which has resulted in the decline of several species. Overexploitation and poaching have led to a significant decrease in the population of some iconic species, such as the snow leopard and Himalayan musk deer. Climate change has also affected the Himalayan region, leading to altered habitats and disrupted migratory patterns of many species. Additionally, natural disasters, such as earthquakes, landslides, and floods, have caused significant damage to the Himalayan ecosystem and its biodiversity. Conservation strategies that have been implemented to protect the Himalayan faunal biodiversity include protected area management, community-based conservation, and conservation breeding programs. Protected area management involves the establishment of national parks, wildlife reserves, and other protected areas to conserve and manage the biodiversity. Community-based conservation involves engaging local communities in conservation efforts, promoting sustainable livelihoods, and reducing human-wildlife conflicts. Conservation breeding programs involve captive breeding and reintroduction of endangered species to augment their population. Therefore, the present chapter has been designed to summarize various threats and challenges and discusses various conservation strategies of Himalayan faunal biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SK, Ballesteros-Canovas J, Randhawa SS, Singha AK, Huggel C, Stoffel M (2018) Translating the concept of climate risk into an assessment framework to inform adaptation planning: Insights from a pilot study of flood risk in Himachal Pradesh, Northern India. Environ Sci Pol 87:1–10

    Article  Google Scholar 

  • Apitz SE (2012) Conceptualizing the role of sediment in sustaining ecosystem services: sediment-ecosystem regional assessment (SEcoRA). Sci Total Environ 415:9–30

    Article  CAS  PubMed  Google Scholar 

  • Arneth A, Shin YJ, Leadley P, Rondinini C, Bukvareva E, Kolb M, Midgley GF, Oberdorff T, Palomo I, Saito O (2020) Post-2020 biodiversity targets need to embrace climate change. Proc Natl Acad Sci 117(49):30882–30891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1:309–340

    Article  Google Scholar 

  • Bajracharya RM, Shrestha HL, Shakya R, Sitaula BK (2015) Agro-forestry systems as a means to achieve carbon co-benefits in Nepal. J Forest Livelihood 13(1):59–68

    Article  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9(10):1146–1156

    Article  PubMed  Google Scholar 

  • Balvanera P, Siddique I, Dee L, Paquette A, Isbell F, Gonzalez A, Byrnes J, O’Connor MI, Hungate BA, Griffin JN (2014) Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64(1):49–57

    Article  Google Scholar 

  • Bastian O (2013) The role of biodiversity in supporting ecosystem services in Natura 2000 sites. Ecol Indic 24:12–22

    Article  Google Scholar 

  • Behera MD, Behera SK, Sharma S (2019) Recent advances in biodiversity and climate change studies in India. Biodivers Conserv 28:1943–1951

    Article  Google Scholar 

  • Benkwitt CE, Wilson SK, Graham NA (2020) Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat Ecol Evol 4(7):919–926

    Article  PubMed  Google Scholar 

  • Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Butchart SH, Levi T (2017) Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547(7664):441–444

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee A, Anadón JD, Lohman DJ, Doleck T, Lakhankar T, Shrestha BB, Thapa P, Devkota D, Tiwari S, Jha A, Siwakoti M (2017) The impact of climate change on biodiversity in Nepal: current knowledge, lacunae, and opportunities. Climate 5(4):80

    Article  Google Scholar 

  • Bhattarai KK, Pant LP, FitzGibbon J (2020) Contested governance of drinking water provisioning services in Nepal’s transboundary river basins. Ecosyst Serv 45:101184

    Article  Google Scholar 

  • Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MA, Ballaré CL, Flint SD (2019) Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 18(3):681–716

    Article  CAS  PubMed  Google Scholar 

  • Buzhdygan OY, Meyer ST, Weisser WW, Eisenhauer N, Ebeling A, Borrett SR, Buchmann N, Cortois R, De Deyn GB, de Kroon H, Gleixner G (2020) Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat Ecol Evol 4(3):393–405

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary A, Mooers AO (2018) Terrestrial vertebrate biodiversity loss under future global land use change scenarios. Sustain For 10(8):2764

    Article  Google Scholar 

  • Covich AP, Austen MC, Bärlocher F, Chauvet E, Cardinale BJ, Biles CL, Inchausti P, Dangles O, Solan M, Gessner MO, Statzner B (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54(8):767–775

    Article  Google Scholar 

  • Dolezal J, Fibich P, Altman J, Leps J, Uemura S, Takahashi K, Hara T (2020) Determinants of ecosystem stability in a diverse temperate forest. Oikos 129(11):1692–1703

    Article  Google Scholar 

  • Dorji S, Rajaratnam R, Vernes K (2019) Mammal richness and diversity in a Himalayan hotspot: the role of protected areas in conserving Bhutan’s mammals. Biodivers Conserv 28(12):3277–3297

    Article  Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2(1):239–259

    Article  CAS  Google Scholar 

  • Gertler PJ, Martinez S, Premand P, Rawlings LB, Vermeersch CM (2016) Impact evaluation in practice. World Bank Publications

    Google Scholar 

  • Gillette DP, Edds DR, Jha BR, Mishra B (2022) Thirty years of environmental change reduces local, but not regional, diversity of riverine fish assemblages in a Himalayan biodiversity hotspot. Biol Conserv 265:109427

    Article  Google Scholar 

  • Glazer AN, Likens GE (2012) The water table: the shifting foundation of life on land. Ambio 41:657–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D (2019) Experimental realization of an intrinsic magnetic topological insulator. Chin Phys Lett 36(7):076801

    Article  CAS  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159(3):294–304

    Article  PubMed  Google Scholar 

  • Guzzella L, Poma G, De Paolis A, Roscioli C, Viviano G (2011) Organic persistent toxic substances in soils, waters and sediments along an altitudinal gradient at Mt. Sagarmatha, Himalayas, Nepal. Environ Pollut 159(10):2552–2564

    Article  CAS  PubMed  Google Scholar 

  • Habibullah MS, Din BH, Tan SH, Zahid H (2022) Impact of climate change on biodiversity loss: global evidence. Environ Sci Pollut Res 29(1):1073–1086

    Article  Google Scholar 

  • Hamid A, Wardiatno Y (2018) Diversity of Decapod Crustaceans in Lasongko Bay, south-east Sulawesi, Indonesia. Biodiv J 9(3):303–311

    Article  Google Scholar 

  • Haq R, Klarsfeld A, Kornau A, Ngunjiri FW (2020) Diversity in India: Addressing caste, disability and gender. Equal Divers Inclusion: Int J 39(6):585–596

    Article  Google Scholar 

  • Hassan ST, Baloch MA, Mahmood N, Zhang J (2019) Linking economic growth and ecological footprint through human capital and biocapacity. Sustain Cities Soc 47:101516

    Article  Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448(7150):188–190

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3(9):816–821

    Article  Google Scholar 

  • Holt BG, Rioja-Nieto R, Aaron MacNeil M, Lupton J, Rahbek C (2013) Comparing diversity data collected using a protocol designed for volunteers with results from a professional alternative. Methods Ecol Evol 4(4):383–392

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401):105–108

    Article  CAS  PubMed  Google Scholar 

  • Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ, Levett DZ, Howard DJ, Fernandez BO, Burgess SL, Ament Z, Gilbert-Kawai ET (2017) Metabolic basis to Sherpa altitude adaptation. Proc Natl Acad Sci 114(24):6382–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huss M, Hock R (2018) Global-scale hydrological response to future glacier mass loss. Nat Clim Chang 8(2):135–140

    Article  Google Scholar 

  • Immerzeel WW, Lutz AF, Andrade M, Bahl A, Biemans H, Bolch T, Hyde S, Brumby S, Davies BJ, Elmore AC, Emmer A (2020) Importance and vulnerability of the world’s water towers. Nature 577(7790):364–369

    Article  CAS  PubMed  Google Scholar 

  • Ingty T (2021) Response of socio-ecological systems to climate change in the Alpine ecosystems of the Himalaya. (Doctoral dissertation, University of Massachusetts Boston)

    Google Scholar 

  • Jiang X, Pan B, Sun Z, Cao L, Lu Y (2020) Application of taxonomic distinctness indices of fish assemblages for assessing effects of river-lake disconnection and eutrophication in floodplain lakes. Ecol Indic 110:105955

    Article  Google Scholar 

  • Kattel G, Zhang K, Yang X (2018) Application of subfossil cladocerans (water fleas) in assessing ecological resilience of shallow Yangtze River floodplain lake systems (China). Science China Earth Sci 61:1157–1168

    Article  Google Scholar 

  • Khadka UR, Ramanathan AL (2012) Major ion composition and seasonal variation in the Lesser Himalayan Lake: case of Begnas Lake of the Pokhara Valley, Nepal. Arab J Geosci 6:4191–4206

    Article  Google Scholar 

  • Khan SM, Page S, Ahmad H, Shaheen H, Ullah Z, Ahmad M, Harper DM (2013) Medicinal flora and ethnoecological knowledge in the Naran Valley, Western Himalaya, Pakistan. J Ethnobiol Ethnomed 9:1–13

    Article  Google Scholar 

  • Khan SM, Page S, Ahmad H, Harper D (2014) Ethno-ecological importance of plant biodiversity in mountain ecosystems with special emphasis on indicator species of a Himalayan Valley in the northern Pakistan. Ecol Indic 37:175–185

    Article  Google Scholar 

  • Khatiwada JR, Ghimire S, Khatiwada SP, Paudel B, Bischof R, Jiang J, Haugaasen T (2016) Frogs as potential biological control agents in the rice fields of Chitwan, Nepal. Agric Ecosyst Environ 230:307–314

    Article  Google Scholar 

  • Kotru RK, Shakya B, Joshi S, Gurung J, Ali G, Amatya S, Pant B (2020) Biodiversity conservation and management in the Hindu Kush Himalayan Region: are transboundary landscapes a promising solution? Mt Res Dev 40(2):A15

    Article  Google Scholar 

  • Kovács-Hostyánszki A, Espíndola A, Vanbergen AJ, Settele J, Kremen C, Dicks LV (2017) Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol Lett 20(5):673–689

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunwar RM, Baral K, Paudel P, Acharya RP, Thapa-Magar KB, Cameron M, Bussmann RW (2016) Land-use and socioeconomic change, medicinal plant selection and biodiversity resilience in far Western Nepal. PLoS One 11(12):0167812

    Article  Google Scholar 

  • Lacoul P, Freedman B (2006) Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquat Bot 84(1):3–16

    Article  Google Scholar 

  • Lami A, Marchetto A, Musazzi S, Salerno F, Tartari G, Guilizzoni P, Rogora M, Tartari GA (2010) Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods. Hydrobiologia 648:189–205

    Article  Google Scholar 

  • Lamsal P, Kumar L, Aryal A, Atreya K (2018) Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47(6):697–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau CL, Smythe LD, Craig SB, Weinstein P (2010) Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Trans R Soc Trop Med Hyg 104(10):631–638

    Article  PubMed  Google Scholar 

  • Li X, Liu X, Kraus F, Tingley R, Li Y (2016) Risk of biological invasions is concentrated in biodiversity hotspots. Front Ecol Environ 14(8):411–417

    Article  Google Scholar 

  • Li L, Hu R, Huang J, Bürgi M, Zhu Z, Zhong J, Lü Z (2020) A farmland biodiversity strategy is needed for China. Nat Ecol Evol 4(6):772–774

    Article  PubMed  Google Scholar 

  • Lucas PL, Kok MT, Nilsson M, Alkemade R (2013) Integrating biodiversity and ecosystem services in the post-2015 development agenda: goal structure, target areas and means of implementation. Sustain For 6(1):193–216

    Article  Google Scholar 

  • Manca M, Comoli P (2004) Reconstructing long-term changes in Daphnia’s body size from subfossil remains in sediments of a small lake in the Himalayas. J Paleolimnol 32(1):95–107

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  • Nepali K, Lee HY, Liou JP (2018) Nitro-group-containing drugs. J Med Chem 62(6):2851–2893

    Article  PubMed  Google Scholar 

  • Nie W, Shi Y, Siaw MJ, Yang F, Wu R, Wu X, Zheng X, Bao Z (2021) Constructing and optimizing ecological network at county and town scale: the case of Anji County, China. Ecol Indic 132:108294

    Article  Google Scholar 

  • Noble JC, Mueller WJ, Detling JK, Pfitzner GH (2007) Landscape ecology of the burrowing bettong: warren distribution and patch dynamics in semiarid eastern Australia. Austral Ecol 32(3):326–337

    Article  Google Scholar 

  • Oliver TH, Heard MS, Isaac NJ, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30(11):673–684

    Article  PubMed  Google Scholar 

  • Pandit MK, Manish K, Koh LP (2014) Dancing on the roof of the world: ecological transformation of the Himalayan landscape. Bioscience 64(11):980–992

    Article  Google Scholar 

  • Peh KSH, Thapa I, Basnyat M, Balmford A, Bhattarai GP, Bradbury RB, Brown C, Butchart SH, Dhakal M, Gurung H, Hughes FM (2016) Synergies between biodiversity conservation and ecosystem service provision: lessons on integrated ecosystem service valuation from a Himalayan protected area, Nepal. Ecosyst Serv 22:359–369

    Article  Google Scholar 

  • Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F (2019) Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568(7750):88–92

    Article  CAS  PubMed  Google Scholar 

  • Pires AP, Amaral AG, Padgurschi MC, Joly CA, Scarano FR (2018) Biodiversity research still falls short of creating links with ecosystem services and human well-being in a global hotspot. Ecosyst Serv 34:68–73

    Article  Google Scholar 

  • Potts SG, Imperatriz Fonseca V, Ngo HT, Biesmeijer JC, Breeze TD, Dicks L, Garibaldi LA, Hill R, Settele J, Vanbergen AJ, Aizen MA (2016) Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany

    Google Scholar 

  • Rashid I, Romshoo SA, Vijayalakshmi T (2013) Geospatial modelling approach for identifying disturbance regimes and biodiversity rich areas in North Western Himalayas, India. Biodivers Conserv 22:2537–2566

    Article  Google Scholar 

  • Rashid F, Glover PWJ, Lorinczi P, Hussein D, Collier R, Lawrence J (2015a) Permeability prediction in tight carbonate rocks using capillary pressure measurements. Mar Pet Geol 68:536–550

    Article  Google Scholar 

  • Rashid I, Romshoo SA, Chaturvedi RK, Ravindranath NH, Sukumar R, Jayaraman M, Lakshmi TV, Sharma J (2015b) Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Clim Chang 132:601–613

    Article  Google Scholar 

  • Rawal RS, Rawal R, Rawat B, Negi VS, Pathak R (2018) Plant species diversity and rarity patterns along altitude range covering treeline ecotone in Uttarakhand: conservation implications. Trop Ecol 59(2):225–239

    Google Scholar 

  • Rawat DS, Tiwari P, Das SK, Tiwari JK (2020) Tree species composition and diversity in montane forests of Garhwal Himalaya in relation to environmental and soil properties. J Mt Sci 17(12):3097–3111

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Ã…, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  PubMed  Google Scholar 

  • Saslis-Lagoudakis CH, Hawkins JA, Greenhill SJ, Pendry CA, Watson MF, Tuladhar-Douglas W, Baral SR, Savolainen V (2014) The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proc R Soc B Biol Sci 281(1780):20132768

    Article  Google Scholar 

  • Schirpke U, Timmermann F, Tappeiner U, Tasser E (2016) Cultural ecosystem services of mountain regions: modelling the aesthetic value. Ecol Indic 69:78–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott GW, Goulder R, Wheeler P, Scott LJ, Tobin ML, Marsham S (2012) The value of fieldwork in life and environmental sciences in the context of higher education: a case study in learning about biodiversity. J Sci Educ Technol 21:11–21

    Article  Google Scholar 

  • Sharma B, Rasul G, Chettri N (2015) The economic value of wetland ecosystem services: evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosyst Serv 12:84–93

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7(5):36741

    Article  Google Scholar 

  • Sigdel SR, Liang E, Wang Y, Dawadi B, Camarero JJ (2020) Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. J Biogeogr 47(8):1816–1826

    Article  Google Scholar 

  • Stringer LC, Dougill AJ, Thomas AD, Spracklen DV, Chesterman S, Speranza CI, Rueff H, Riddell M, Williams M, Beedy T, Abson DJ (2012) Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands. Environ Sci Pol 19:121–135

    Article  Google Scholar 

  • Sunday JM (2020) The pace of biodiversity change in a warming climate. Nature 580(7804):460–461

    Article  CAS  PubMed  Google Scholar 

  • Sweeney BW, Bott TL, Jackson JK, Kaplan LA, Newbold JD, Standley LJ, Hession WC, Horwitz RJ (2004) Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci 101(39):14132–14137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8(2):57103

    Article  Google Scholar 

  • Thorn JP, Thornton TF, Helfgott A, Willis KJ (2020) Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal. J Ethnobiol Ethnomed 16:1–25

    Article  Google Scholar 

  • Trabucchi M, Ntshotsho P, O'Farrell P, Comín FA (2012) Ecosystem service trends in basin-scale restoration initiatives: a review. J Environ Manag 111:18–23

    Article  Google Scholar 

  • Villa JA, Bernal B (2018) Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecol Eng 114:115–128

    Article  Google Scholar 

  • Walsh CJ, Booth DB, Burns MJ, Fletcher TD, Hale RL, Hoang LN, Livingston G, Rippy MA, Roy AH, Scoggins M, Wallace A (2016) Principles for urban stormwater management to protect stream ecosystems. Freshwater Sci 35(1):398–411

    Article  Google Scholar 

  • White JK, Nielsen JL, Madsen AM (2019) Microbial species and biodiversity in settling dust within and between pig farms. Environ Res 171:558–567

    Article  CAS  PubMed  Google Scholar 

  • Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6(5):247–254

    Article  Google Scholar 

  • Wood CL, Lafferty KD, DeLeo G, Young HS, Hudson PJ, Kuris AM (2016) Does biodiversity protect humans against infectious disease? Ecology 97(2):542–546

    Article  PubMed  Google Scholar 

  • Wood E, Harsant A, Dallimer M, Cronin de Chavez A, McEachan RR, Hassall C (2018) Not all green space is created equal: biodiversity predicts psychological restorative benefits from urban green space. Front Psychol 9:2320

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, **e L, Yuan Z, Jiang S, Liu W, Sheng H (2020) Investigating public biodiversity conservation awareness based on the propagation of wildlife-related incidents on the Sina Weibo social media platform. Environ Res Lett 15(9):094082

    Article  Google Scholar 

  • Xu F, Fox D (2014) Modelling attitudes to nature, tourism and sustainable development in national parks: a survey of visitors in China and the UK. Tour Manag 45:142–158

    Article  Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang YUN, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23(3):520–530

    Article  CAS  PubMed  Google Scholar 

  • Zahoor M, Nizamuddin S, Madapusi S, Giustozzi F (2021) Sustainable asphalt rejuvenation using waste cooking oil: a comprehensive review. J Clean Prod 278:123304

    Article  CAS  Google Scholar 

  • Zomer R, Sharma E (2009) A need for mountain perspectives: Impacts of climate change on ecosystem services in the greater Hindu Kush–Himalaya region. In IOP Conference Series. Earth Environ Sci 6:30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Premlata, Kumar, R., Hajam, Y.A., Giri, A. (2024). Threats, Challenges, and Conservation Strategies of Himalayan Faunal Biodiversity. In: Sobti, R.C. (eds) Role of Science and Technology for Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-97-0710-2_19

Download citation

Publish with us

Policies and ethics

Navigation