Properties and Performance of Biopolymers in Textile Applications

  • Chapter
  • First Online:
Biopolymers in the Textile Industry

Abstract

Biopolymers are created from renewable resources, and those can provide environmentally friendly alternatives to traditional synthetic polymers. Biopolymers have always been the main source in textile industries, including cellulosic and protein fibres used as raw materials for textile products. But in recent years, the textile industry has become increasingly interested in biopolymers for other applications also because of their biodegradability, low carbon footprint, and compatibility with natural fibres. In textile applications, biopolymers such as chitosan, polysaccharides, and proteins have demonstrated good qualities, including high water absorption capacity and great dyeability. The antibacterial and antifungal attributes of chitosan, which is derived from chitin, make it suitable for use in medical textiles. Biopolymers, like different polysaccharides, have demonstrated promising results in the dying, printing, finishing, medical textiles, and packaging industries. Biopolymer performance in textile applications depends on several variables, including processing conditions, blend ratios, and finishing treatments. Adjusting the proportions of natural fibres and synthetic polymers can also improve the final product's qualities. This chapter will examine the characteristics and performance of these biopolymers used in textile applications. It will discuss the origins, characteristics, and applications of biopolymers in the textile sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. K. Williams and M. A. Hillmyer, “Polymers from renewable resources: A perspective for a special issue of polymer reviews,” Polymer Reviews, vol. 48, no. 1, pp. 1–10, Jan. 2008, doi: https://doi.org/10.1080/15583720701834133.

    Article  CAS  Google Scholar 

  2. J. C. Philp, R. J. Ritchie, and K. Guy, “Biobased plastics in a bioeconomy,” Trends in Biotechnology, vol. 31, no. 2. pp. 65–67, Feb. 2013. doi: https://doi.org/10.1016/j.tibtech.2012.11.009.

    Article  CAS  PubMed  Google Scholar 

  3. A. Gandini, “Polymers from renewable resources: A challenge for the future of macromolecular materials,” Macromolecules, vol. 41, no. 24, pp. 9491–9504, Dec. 2008, doi: https://doi.org/10.1021/ma801735u.

    Article  CAS  Google Scholar 

  4. Boyle, J. (2008). Molecular biology of the cell. In B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, & P. Walter (Eds.), Biochemistry and Molecular Biology Education, (5th edn., Vol. 36, no. 4, pp. 317–318). https://doi.org/10.1002/bmb.20192.

  5. Torres, F. G., Troncoso, O. P., Pisani, A., Gatto, F., & Bardi, G. (2019). Natural polysaccharide nanomaterials: An overview of their immunological properties. International Journal of Molecular Sciences, 20(20). (MDPI AG, Oct. 02, 2019). https://doi.org/10.3390/ijms20205092.

  6. Avérous, L., & Pollet, E. (2012). Environmental Silicate Nano-Biocomposites, Green Energy and Technology, 50. https://doi.org/10.1007/978-1-4471-4108-2.

  7. Emadian, S. M., Onay, T. T., Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, (Vol. 59, pp. 526–536). (Elsevier Ltd., Jan. 01, 2017). https://doi.org/10.1016/j.wasman.2016.10.006.

  8. Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., Le, T. A. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e07918.

  9. T. A. Hottle, M. M. Bilec, and A. E. Landis, “Sustainability assessments of bio-based polymers,” Polymer Degradation and Stability, vol. 98, no. 9. pp. 1898–1907, Sep. 2013. doi: https://doi.org/10.1016/j.polymdegradstab.2013.06.016.

    Article  CAS  Google Scholar 

  10. Senthilkannan Muthu, S. (Ed.). (2014) Textile science and clothing technology roadmap to sustainable textiles and clothing environmental and social aspects of textiles and clothing supply chain. http://www.springer.com/series/13111.

  11. Pilla, S. (2011). Engineering applications of bioplastics and biocomposites-an overview.

    Google Scholar 

  12. Jawaid, M., Mohd, S., Othman, S., Alothman Editors, Y. (2017). Green energy and technology green biocomposites manufacturing and properties. http://www.springer.com/series/8059.

  13. Shahid-ul-Islam, & Mohammad, F. (2014). Emerging green technologies and environment friendly products for sustainable textiles (pp. 63–82). https://doi.org/10.1007/978-981-287-110-7_3.

  14. Karthik, T., & Rathinamoorthy, R. (2017). Sustainable synthetic fibre production (Elsevier Ltd., 2017). https://doi.org/10.1016/B978-0-08-102041-8.00008-1.

  15. Udayan, A., Arumugam, M., & Pandey, A. (2017). Chapter 4-Nutraceuticals from algae and cyanobacteria. In R. P. Rastogi, D. Madamwar, & A. Pandey, (Eds.), Algal green chemistry (pp. 65–89, 2017). Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00004-7.

  16. El Khadem, H. S. (2003). Carbohydrates. In R. A. Meyers, (Ed.), Encyclopedia of physical science and technology (3rd edn., pp. 369–416). Academic Press. https://doi.org/10.1016/B0-12-227410-5/00080-6.

  17. H. Chen, Y. Jia, and Q. Guo, “@@@Chapter 6 - Polysaccharides and polysaccharide complexes as potential sources of antidiabetic compounds: A review,” in Bioactive Natural Products, Atta-ur-Rahman, Ed., in Studies in Natural Products Chemistry, vol. 67. Elsevier, 2020, pp. 199–220. doi: https://doi.org/10.1016/B978-0-12-819483-6.00006-0.

  18. David John Thomas, William A. Atwell, “Starches”. Eagan Press, St. Paul, Minn., 1999. ISBN: 9781891127014, 1891127012

    Google Scholar 

  19. M. Mitrus, A. Wojtowicz, and L. Moscicki, “Biodegradable Polymers and Their Practical Utility,” in Thermoplastic Starch: A Green Material for Various Industries, L. Janssen, Leon P.B.M; Moscicki, Ed., Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010, pp. 1–33. doi: https://doi.org/10.1002/9783527628216.ch1.

  20. J. F. Robyt, “Starch: Structure, Properties, Chemistry and Enzymology,” in Glycoscience: Chemistry and Chemical Biology, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., Heidelberg: Springer, 2008, pp. 1437–1472.

    Chapter  Google Scholar 

  21. R. Amin, A. Mahmud, and F. Rahman, “Natural Fibre Reinforced Starch Based Biocomposites,” Polymer Science - Series A, vol. 61, no. 5, pp. 533–543, 2019, doi: https://doi.org/10.1134/S0965545X1905016X.

    Article  Google Scholar 

  22. R. Amin, F. R. Anannya, Md. A. Mahmud, and S. Raian, “Esterification of starch in search of a biodegradable thermoplastic material,” Journal of Polymer Research, vol. 27, pp. 1–12, 2020, doi: https://doi.org/10.1007/s10965-019-1983-2.

    Article  CAS  Google Scholar 

  23. M. A. Mahmud, “Development of Modified Starch Coated Jute Fabric,” Journal of The Institution of Engineers (India): Series E, vol. 99, no. 2, pp. 149–156, 2018, doi: https://doi.org/10.1007/s40034-018-0123-6.

  24. T. Ahmed et al., “Evaluation of sizing parameters on cotton using the modified sizing agent,” Clean Eng Technol, vol. 5, p. 100320, 2021, doi: https://doi.org/10.1016/j.clet.2021.100320.

    Article  Google Scholar 

  25. S. Djordjevic, S. Kovacevic, L. J. Nikolic, M. Miljkovic, and D. Djordjevic, “Cotton Yarn Sizing by Acrylamide Grafted Starch Copolymer,” Journal of Natural Fibres, vol. 11, no. 3, pp. 212–224, Jul. 2014, doi: https://doi.org/10.1080/15440478.2013.874963.

    Article  CAS  Google Scholar 

  26. S. Kovačević, I. Schwarz, S. Dordević, and D. Dordević, “Synthesis of corn starch derivatives and their application in yarn sizing,” Polymers (Basel), vol. 12, no. 6, Jun. 2020, doi: https://doi.org/10.3390/POLYM12061251.

  27. A. K. Roy Choudhury, “4 - Starch finishing,” in Principles of Textile Finishing, A. K. Roy Choudhury, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2017, pp. 61–77. doi: https://doi.org/10.1016/B978-0-08-100646-7.00004-7.

  28. R. H. Abou-Saleh et al., “Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures,” Nat Commun, vol. 9, no. 1, p. 4538, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  29. R. M. Brown Jr, “Cellulose structure and biosynthesis: what is in store for the 21st century?,” J Polym Sci A Polym Chem, vol. 42, no. 3, pp. 487–495, 2004.

    Article  CAS  Google Scholar 

  30. D. Klemm, B. Heublein, H. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte chemie international edition, vol. 44, no. 22, pp. 3358–3393, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Liu et al., “A review of cellulose and its derivatives in biopolymer-based for food packaging application,” Trends Food Sci Technol, vol. 112, no. April, pp. 532–546, 2021, doi: https://doi.org/10.1016/j.tifs.2021.04.016.

    Article  CAS  Google Scholar 

  32. A. Brogniart, A. B. Pelonze, and R. Dumus, “Report on a Memoir of M. Payen, on the Composition of the Woody Nature,” Comptes Rendus, 1839.

    Google Scholar 

  33. B. Sun, M. Zhang, J. Shen, Z. He, P. Fatehi, and Y. Ni, “Applications of Cellulose-based Materials in Sustained Drug Delivery Systems,” Curr Med Chem, vol. 26, no. 14, pp. 2485–2501, 2018, doi: https://doi.org/10.2174/0929867324666170705143308.

    Article  CAS  Google Scholar 

  34. S. Wang, A. Lu, and L. Zhang, “Recent advances in regenerated cellulose materials,” Prog Polym Sci, vol. 53, pp. 169–206, 2016, doi: https://doi.org/10.1016/j.progpolymsci.2015.07.003.

    Article  CAS  Google Scholar 

  35. J. Li, S. Lu, F. Liu, Q. Qiao, H. Na, and J. Zhu, “Structure and Properties of Regenerated Cellulose Fibres Based on Dissolution of Cellulose in a CO2Switchable Solvent,” ACS Sustain Chem Eng, vol. 9, no. 13, pp. 4744–4754, 2021, doi: https://doi.org/10.1021/acssuschemeng.0c08907.

    Article  CAS  Google Scholar 

  36. D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, “Cellulose: Fascinating biopolymer and sustainable raw material,” Angewandte Chemie - International Edition, vol. 44, no. 22, pp. 3358–3393, 2005, doi: https://doi.org/10.1002/anie.200460587.

    Article  CAS  PubMed  Google Scholar 

  37. T. Karthik and R. Rathinamoorthy, “Sustainable biopolymers in textiles: An overview,” Handbook of Ecomaterials, vol. 3, pp. 1435–1460, 2019, doi: https://doi.org/10.1007/978-3-319-68255-6_53.

    Article  Google Scholar 

  38. C. Woodings, Regenerated cellulose fibres. 2001. doi: https://doi.org/10.1533/9781855737587.

    Article  Google Scholar 

  39. A. Sharma, S. Nagarkar, S. Thakre, and G. Kumaraswamy, “Structure–property relations in regenerated cellulose fibres: comparison of fibres manufactured using viscose and lyocell processes,” Cellulose, vol. 0123456789, no. 1, 2019, doi: https://doi.org/10.1007/s10570-019-02352-w.

  40. R. B. Seymour and R.S. Porter, Manmade Fibres: their Origin and Development, 1993rd ed. England: ElsevierScience Publishers Ltd., 1993.

    Google Scholar 

  41. U. Javaid, Z. Ahmad, S. Iqbal, and S. Naeem, Viscose Fibre Strength and Degree of Polymerization. 2014.

    Google Scholar 

  42. C. R.B. and P. A.K., “Development and processing of lyocell,” Indian J Fibre Text Res, vol. 29, pp. 483–492, 2004.

    Google Scholar 

  43. T. Heinze and T. Liebert, “Unconventional methods in cellulose functionalization,” Progress in Polymer Science (Oxford), vol. 26, no. 9, pp. 1689–1762, 2001, doi: https://doi.org/10.1016/S0079-6700(01)00022-3.

    Article  CAS  Google Scholar 

  44. W. P. Mbe, Lyocell: the production process and market development. Woodhead Publishing Ltd, 1984. doi: https://doi.org/10.1533/9781855737587.62.

    Article  Google Scholar 

  45. U. C. Hipler and C. Wiegand, Biofunctional textiles based on cellulose and their approaches for therapy and prevention of atopic eczema. Woodhead Publishing Limited, 2011. doi: https://doi.org/10.1533/9780857093691.2.280.

    Article  Google Scholar 

  46. S. Zhang et al., “Regenerated cellulose by the lyocell process, a brief review of the process and properties,” Bioresources, vol. 13, no. 2, pp. 1–16, 2018, doi: https://doi.org/10.15376/biores.13.2.Zhang.

    Article  Google Scholar 

  47. A. J. Sayyed, N. A. Deshmukh, and D. V. Pinjari, “A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell,” Cellulose, vol. 26, no. 4, p. 2913, 2019.

    Article  CAS  Google Scholar 

  48. R. Zaman and H. Ara Begum, “Regenerating Cuprammonium rayon from Various Cotton and Cotton-Polyester Mix Textile and Apparel Wastage”, 1st National Conference on Sustainable Textile and Apparel EngineeringAt: Tangail, Bangladesh, 2020.

    Google Scholar 

  49. M. T. Holtzapple, “CELLULOSE,” in Encyclopedia of Food Sciences and Nutrition (Second Edition), B. Caballero, Ed., Second Edition.Oxford: Academic Press, 2003, pp. 998–1007. doi: https://doi.org/10.1016/B0-12-227055-X/00185-1.

  50. M. Niaounakis, “10 - Building and Construction Applications,” in Biopolymers: Applications and Trends, M. Niaounakis, Ed., Oxford: William Andrew Publishing, 2015, pp. 445–505. doi: https://doi.org/10.1016/B978-0-323-35399-1.00010-7.

  51. L. Rachel, “5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application.,” Macromol Symp, vol. 208, pp. 255–266, 2004.

    Article  Google Scholar 

  52. R. S. Dassanayake, C. Gunathilake, N. Abidi, and M. Jaroniec, “Activated carbon derived from chitin aerogels: preparation and CO2 adsorption,” Cellulose, vol. 25, no. 3, pp. 1911–1920, 2018, doi: https://doi.org/10.1007/s10570-018-1660-3.

    Article  CAS  Google Scholar 

  53. A. Jahandideh, M. Ashkani, and N. Moini, “Biopolymers in textile industries,” Biopolymers and their Industrial Applications, no. January, pp. 193–218, 2021, doi: https://doi.org/10.1016/b978-0-12-819240-5.00008-0.

  54. S. et al. Rana, “Regenerated cellulosic fibres and their implications on sustainability,” In: Muthu SS, editor. Roadmap to Sustainable Textiles and Clothing: Eco-Friendly Raw Materials,Technologies, and Processing Methods. Singapore, vol. 14, pp. 239–276, 2014.

    Google Scholar 

  55. B. Duan et al., “High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature,” J Mater Chem A Mater, vol. 1, no. 5, pp. 1867–1874, 2013, doi: https://doi.org/10.1039/c2ta00068g.

    Article  CAS  Google Scholar 

  56. S. Acharya, Y. Hu, H. Moussa, and N. Abidi, “Preparation and characterization of transparent cellulose films using an improved cellulose dissolution process,” J Appl Polym Sci, vol. 134, no. 21, pp. 1–12, 2017, doi: https://doi.org/10.1002/app.44871.

    Article  CAS  Google Scholar 

  57. Z. Y. Yang, W. J. Wang, Z. Q. Shao, H. D. Zhu, Y. H. Li, and F. J. Wang, “The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers,” Cellulose, vol. 20, no. 1, pp. 159–168, 2013, doi: https://doi.org/10.1007/s10570-012-9796-z.

    Article  CAS  Google Scholar 

  58. D. Tristantini and A. Yunan, “Characterization of cellulose acetate based on empty fruit bunches and dried jackfruit leaves as replacement candidates for microbeads,” E3S Web of Conferences, vol. 67, 2018, doi: https://doi.org/10.1051/e3sconf/20186704024.

  59. M. Oprea and S. I. Voicu, “Recent advances in applications of cellulose derivatives-based composite membranes with hydroxyapatite,” Materials, vol. 13, no. 11, 2020, doi: https://doi.org/10.3390/ma13112481.

  60. M. A. Wsoo, S. Shahir, S. P. Mohd Bohari, N. H. M. Nayan, and S. I. A. Razak, “A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective,” Carbohydr Res, vol. 491, no. January, p. 107978, 2020, doi: https://doi.org/10.1016/j.carres.2020.107978.

  61. K. Broker, I. From, and C. Chemistry, “Cellulose Derivatives,” vol. XI, no. 4, 1976.

    Google Scholar 

  62. A. Jahandideh, M. Ashkani, and N. Moini, “Biopolymers in textile industries,” in Biopolymers and Their Industrial Applications, Elsevier, 2021, pp. 193–218.

    Google Scholar 

  63. S. Islam, M. A. R. Bhuiyan, and M. N. Islam, “Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering,” J Polym Environ, vol. 25, no. 3, pp. 854–866, 2017, doi: https://doi.org/10.1007/s10924-016-0865-5.

    Article  CAS  Google Scholar 

  64. L. Qian, K. Zhang, X. Guo, and M. Yu, “What happens when chitin becomes chitosan? A single-molecule study,” RSC Adv, vol. 13, no. 4, pp. 2294–2300, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. N. V. R. Kumar, R. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, “Chitosan chemistry and pharmaceutical perspectives,” Chem Rev, vol. 104, no. 12, pp. 6017–6084, 2004.

    Article  PubMed  Google Scholar 

  66. I. Younes and M. Rinaudo, “Chitin and chitosan preparation from marine sources. Structure, properties and applications,” Mar Drugs, vol. 13, no. 3, pp. 1133–1174, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. J. Synowiecki and N. A. Al-Khateeb, “Production, properties, and some new applications of chitin and its derivatives,” 2003.

    Google Scholar 

  68. J. Lizardi-Mendoza, W. M. Argüelles Monal, and F. M. Goycoolea Valencia, “Chapter 1 - Chemical Characteristics and Functional Properties of Chitosan,” in Chitosan in the Preservation of Agricultural Commodities, S. Bautista-Baños, G. Romanazzi, and A. Jiménez-Aparicio, Eds., San Diego: Academic Press, 2016, pp. 3–31. doi: https://doi.org/10.1016/B978-0-12-802735-6.00001-X.

  69. M. Fan, Q. Hu, and K. Shen, “Preparation and structure of chitosan soluble in wide pH range,” Carbohydr Polym, vol. 78, no. 1, pp. 66–71, 2009, doi: https://doi.org/https://doi.org/10.1016/j.carbpol.2009.03.031.

    Article  CAS  Google Scholar 

  70. I. Aranaz et al., “Functional characterization of chitin and chitosan,” Curr Chem Biol, vol. 3, no. 2, pp. 203–230, 2009.

    CAS  Google Scholar 

  71. H. K. No and S. P. Meyers, “Application of Chitosan for Treatment of Wastewaters,” in Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, G. W. Ware, Ed., New York, NY: Springer New York, 2000, pp. 1–27. doi: https://doi.org/10.1007/978-1-4757-6429-1_1.

  72. Al Mamun, A., & Chen, J.Y. (Eds.). (2020). Industrial Applications of Biopolymers and their Environmental Impact (1st ed.). CRC Press. https://doi.org/10.1201/9781315154190

  73. M. Ghanbarzadeh, A. Golmoradizadeh, and A. Homaei, “Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes,” Phytochemistry Reviews, vol. 17, no. 3, pp. 535–571, 2018, doi: https://doi.org/10.1007/s11101-018-9548-2.

    Article  CAS  Google Scholar 

  74. K. M. Zia et al., “A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites,” Int J Biol Macromol, vol. 96, pp. 282–301, 2017, doi: https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.11.095.

    Article  CAS  PubMed  Google Scholar 

  75. R. Lapasin and S. Pricl, Rheology of Industrial Polysaccharides: Theory and Applications; Blackie Academic & Professional. 1995. doi: https://doi.org/10.1007/978-1-4615-2185-3.

  76. M. Janarthanan and M. Senthil Kumar, “The properties of bioactive substances obtained from seaweeds and their applications in textile industries,” Journal of Industrial Textiles, vol. 48, no. 1. SAGE Publications Ltd, pp. 361–401, Jul. 01, 2018. doi: https://doi.org/10.1177/1528083717692596.

  77. A. Jahandideh, M. Ashkani, and N. Moini, “Chapter 8 - Biopolymers in textile industries,” in Biopolymers and their Industrial Applications, S. Thomas, S. Gopi, and A. Amalraj, Eds., Elsevier, 2021, pp. 193–218. doi: https://doi.org/10.1016/B978-0-12-819240-5.00008-0.

  78. M. Rinaudo, “Biomaterials based on a natural polysaccharide: alginate,” Tip, vol. 17, no. 1, pp. 92–96, 2014, doi: https://doi.org/10.1016/s1405-888x(14)70322-5.

    Article  Google Scholar 

  79. K. Y. Lee and D. J. Mooney, “Alginate: Properties and biomedical applications,” Progress in Polymer Science (Oxford), vol. 37, no. 1, pp. 106–126, 2012, doi: https://doi.org/10.1016/j.progpolymsci.2011.06.003.

    Article  CAS  Google Scholar 

  80. Y. Cao, X. Shen, Y. Chen, J. Guo, Q. Chen, and X. Jiang, “pH-induced self-assembly and capsules of sodium alginate,” Biomacromolecules, vol. 6, no. 4, pp. 2189–2196, 2005, doi: https://doi.org/10.1021/bm0501510.

    Article  CAS  PubMed  Google Scholar 

  81. Z. ** and Z. Chuan-jie, “Preparation and application of alginate fibre in wound dressings,” JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH, vol. 32, pp. 6397–6400, 2008.

    Google Scholar 

  82. J. P. Paques, E. Van Der Linden, C. J. M. Van Rijn, and L. M. C. Sagis, “Preparation methods of alginate nanoparticles,” Adv Colloid Interface Sci, vol. 209, pp. 163–171, 2014, doi: https://doi.org/10.1016/j.cis.2014.03.009.

    Article  CAS  PubMed  Google Scholar 

  83. J. Sun and H. Tan, “Alginate-based biomaterials for regenerative medicine applications,” Materials, vol. 6, no. 4, pp. 1285–1309, 2013, doi: https://doi.org/10.3390/ma6041285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Y. Qin, “The characterization of alginate wound dressings with different fibre and textile structures,” J Appl Polym Sci, vol. 100, no. 3, pp. 2516–2520, 2006, doi: https://doi.org/10.1002/app.23668.

    Article  CAS  Google Scholar 

  85. Y. Qin, “The gel swelling properties of alginate fibres and their applications in wound management,” Polym Adv Technol, vol. 19, no. 1, pp. 6–14, 2008, doi: https://doi.org/10.1002/pat.960.

    Article  CAS  Google Scholar 

  86. J. Venkatesan, R. Nithya, P. N. Sudha, and S. Kim, Role of Alginate in Bone Tissue Engineering, 1st ed., vol. 73. Elsevier Inc., 2014. doi: https://doi.org/10.1016/B978-0-12-800268-1.00004-4.

  87. P. Taylor, A. Shilpa, S. S. Agrawal, and A. R. Ray, “Journal of Macromolecular Science , Part C : Polymer Reviews Controlled Delivery of Drugs from Alginate Matrix Controlled Delivery of Drugs from Alginate Matrix,” no. September 2012, pp. 37–41, doi: https://doi.org/10.1081/MC-120020160.

  88. A. Haug and O. Smidsrod, “The Effect of Divalent Metals on the Properties of Alginate Solutions,” Acta Chem Scand, vol. 19, no. 2, pp. 341–351, 1965.

    Article  CAS  Google Scholar 

  89. Y. Qin, “Ion-Exchange Properties of Alginate Fibres,” Textile Research Journal, vol. 75, no. 2, pp. 165–168, 2005, doi: https://doi.org/10.1177/004051750507500214.

    Article  CAS  Google Scholar 

  90. Y. Qin, Y. Deng, Y. Hao, N. Zhang, and X. Shang, “Marine Bioactive Fibres: Alginate and Chitosan Fibres-A Critical Review,” Journal of Textile Engineering & Fashion Technology, vol. 1, no. 6, pp. 228–231, 2017, doi: https://doi.org/10.15406/jteft.2017.01.00037.

    Article  Google Scholar 

  91. L. Fan, Y. Du, B. Zhang, J. Yang, J. Zhou, and J. F. Kennedy, “Preparation and properties of alginate/carboxymethyl chitosan blend fibres,” Carbohydr Polym, vol. 65, no. 4, pp. 447–452, 2006, doi: https://doi.org/10.1016/j.carbpol.2006.01.031.

    Article  CAS  Google Scholar 

  92. L. FAN et al., “Antibacterial Fibres Made of Calcium Alginate/Chitosan Derivative,” Journal of Functional Polymers, vol. 18, no. 3, pp. 488–492, 2005.

    CAS  Google Scholar 

  93. H. Q. Li and J. X. Gong, “The application of biodegradable alginate fibre,” Journal of Textile Research, vol. 1, no. 1, pp. 34–36, 2002.

    Google Scholar 

  94. P. Zhu, C. Zhang, S. Sui, and H. Wang, “Preparation, Structure and Properties of High Strength Alginate Fibre,” Research Journal of Textile and Apparel, vol. 13, no. 4, pp. 1–8, 2009, doi: https://doi.org/10.1108/RJTA-13-04-2009-B001.

    Article  Google Scholar 

  95. H. Y. Lin and S. Y. Ciou, “Modifications of alginate-based scaffolds and characterizations of their pentoxifylline release properties,” Carbohydr Polym, vol. 80, no. 2, pp. 574–580, 2010, doi: https://doi.org/10.1016/j.carbpol.2009.11.044.

    Article  CAS  Google Scholar 

  96. V. V. Divya Rani, R. Ramachandran, K. P. Chennazhi, H. Tamura, S. V. Nair, and R. Jayakumar, “Erratum: ‘Fabrication of alginate/nanoTiO2 needle composite scaffolds for tissue engineering applications’ [Carbohydr. Polym. 83 (2011) 858–864] (Carbohydrate Polymers (2011) 83(2) (858–864), (S0144861710007113), (https://doi.org/10.1016/j.carbpol.2010.08.065)),” Carbohydr Polym, vol. 250, no. August, p. 116900, 2020, doi: https://doi.org/10.1016/j.carbpol.2020.116900.

  97. L. W. Chan, A. L. Ching, and C. V. Liew, “Mechanistic Study on Hydration and Drug Release Behavior of Sodium,” pp. 667–676, 2007, doi: https://doi.org/10.1080/03639040600943814.

  98. E. G. Deze, S. K. Papageorgiou, E. P. Favvas, and F. K. Katsaros, “Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and Cd2+ ion sorption,” Chemical Engineering Journal, vol. 209, pp. 537–546, 2012, doi: https://doi.org/10.1016/j.cej.2012.07.133.

    Article  CAS  Google Scholar 

  99. C. H. Goh, P. W. S. Heng, E. P. E. Huang, B. K. H. Li, and L. W. Chan, “Interactions of antimicrobial compounds with cross-linking agents of alginate dressings,” Journal of Antimicrobial Chemotherapy, vol. 62, no. 1, pp. 105–108, 2008, doi: https://doi.org/10.1093/jac/dkn168.

    Article  CAS  PubMed  Google Scholar 

  100. C. H. Goh, P. W. S. Heng, and L. W. Chan, “Cross-linker and non-gelling Na+ effects on multi-functional alginate dressings,” Carbohydr Polym, vol. 87, no. 2, pp. 1796–1802, 2012, doi: https://doi.org/10.1016/j.carbpol.2011.09.097.

    Article  CAS  Google Scholar 

  101. M. Janarthanan and M. Senthil Kumar, “Extraction of alginate from brown seaweeds and evolution of bioactive alginate film coated textile fabrics for wound healing application,” Journal of Industrial Textiles, vol. 49, no. 3, pp. 328–351, 2019, doi: https://doi.org/10.1177/1528083718783331.

  102. R. J. Chudzikowski, “Guar gum and its applications,” J Soc Cosmet Chem, vol. 22, no. 1, p. 43, 1971.

    CAS  Google Scholar 

  103. G. Sharma et al., “Guar gum and its composites as potential materials for diverse applications: A review,” Carbohydr Polym, vol. 199, pp. 534–545, 2018.

    Article  CAS  PubMed  Google Scholar 

  104. N. Thombare, U. Jha, S. Mishra, and M. Z. Siddiqui, “Guar gum as a promising starting material for diverse applications: A review,” Int J Biol Macromol, vol. 88, pp. 361–372, 2016.

    Article  CAS  PubMed  Google Scholar 

  105. C. Verma and M. A. Quraishi, “Gum Arabic as an environmentally sustainable polymeric anticorrosive material: Recent progresses and future opportunities,” Int J Biol Macromol, vol. 184, pp. 118–134, 2021.

    Article  CAS  PubMed  Google Scholar 

  106. J. Baranwal, B. Barse, A. Fais, G. L. Delogu, and A. Kumar, “Biopolymer: A Sustainable Material for Food and Medical Applications,” Polymers, vol. 14, no. 5. MDPI, Mar. 01, 2022. doi: https://doi.org/10.3390/polym14050983.

  107. R. Freeman, J. Boekhoven, M. B. Dickerson, R. R. Naik, and S. I. Stupp, “Biopolymers and supramolecular polymers as biomaterials for biomedical applications,” MRS Bull, vol. 40, no. 12, pp. 1089–1101, 2015, doi: https://doi.org/10.1557/mrs.2015.270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. S. S. Mehetre, R. K. Shankar, R. K. Ameta, and S. S. Behere, “Chapter 1 - An introduction to protein-based biopolymers,” in Protein-Based Biopolymers, S. Kalia and S. Sharma, Eds., in Woodhead Publishing Series in Biomaterials. Woodhead Publishing, 2023, pp. 1–40. doi: https://doi.org/10.1016/B978-0-323-90545-9.00001-X.

  109. S. Nagarajan et al., “Overview of Protein-Based Biopolymers for Biomedical Application,” Based Biopolymers for Biomedical Application. Macromolecular Chemistry and Physics, vol. 220, no. 14, 2019, doi: https://doi.org/10.1002/macp.201900126ï.

  110. I. N. Amirrah, Y. Lokanathan, I. Zulkiflee, M. F. M. R. Wee, A. Motta, and M. B. Fauzi, “A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold,” Biomedicines, vol. 10, no. 9. MDPI, Sep. 01, 2022. doi: https://doi.org/10.3390/biomedicines10092307.

  111. C. R. Chilakamarry et al., “Extraction and application of keratin from natural resources: a review,” 3 Biotech, vol. 11, no. 5. Springer Science and Business Media Deutschland GmbH, May 01, 2021. doi: https://doi.org/10.1007/s13205-021-02734-7.

  112. S. Singh, “Keratin - based materials in Biomedical engineering,” IOP Conf Ser Mater Sci Eng, vol. 1116, p. 12024, May 2021, doi: https://doi.org/10.1088/1757-899X/1116/1/012024.

    Article  CAS  Google Scholar 

  113. M. Nikkhah, M. Akbari, A. Paul, A. Memic, A. Dolatshahi‐Pirouz, and A. Khademhosseini, “Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering,” in Biomaterials from Nature for Advanced Devices and Therapies, 2016, pp. 37–62. doi: https://doi.org/10.1002/9781119126218.ch3.

  114. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, “Silk fibroin biomaterials for tissue regenerations,” Adv Drug Deliv Rev, vol. 65, no. 4, pp. 457–470, 2013, doi: https://doi.org/https://doi.org/10.1016/j.addr.2012.09.043.

    Article  CAS  PubMed  Google Scholar 

  115. H. Trębacz and A. Barzycka, “Mechanical Properties and Functions of Elastin: An Overview,” Biomolecules, vol. 13, no. 3. NLM (Medline), Mar. 01, 2023. doi: https://doi.org/10.3390/biom13030574.

  116. J. Jeevanandam, S. Pan, J. Rodrigues, M. A. Elkodous, and M. K. Danquah, “Medical applications of biopolymer nanofibres,” Biomater. Sci., vol. 10, no. 15, pp. 4107–4118, 2022, doi: https://doi.org/10.1039/D2BM00701K.

    Article  CAS  PubMed  Google Scholar 

  117. D. Sleep, “Albumin and its application in drug delivery,” Expert Opin Drug Deliv, vol. 12, no. 5, pp. 793–812, 2015, doi: https://doi.org/10.1517/17425247.2015.993313.

    Article  CAS  PubMed  Google Scholar 

  118. R. Consultant, “Dairy Ingredients for Food Processing: An Overview,” in Dairy Ingredients for Food Processing, 2011, pp. 3–33. doi: https://doi.org/10.1002/9780470959169.ch1.

  119. J. Zink, T. Wyrobnik, T. Prinz, and M. Schmid, “Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review,” Int J Mol Sci, vol. 17, May 2016, doi: https://doi.org/10.3390/ijms17091376.

  120. L. Day, “10 - Wheat gluten: production, properties and application,” in Handbook of Food Proteins, G. O. Phillips and P. A. Williams, Eds., in Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 2011, pp. 267–288. doi: https://doi.org/10.1533/9780857093639.267.

  121. R. Parenteau-Bareil, G. Robert, and F. Berthod, “Collagen-Based Biomaterials for Tissue Engineering Applications,” Materials, vol. 3, May 2010, doi: https://doi.org/10.3390/ma3031863.

  122. R. Parenteau-Bareil, R. Gauvin, and F. Berthod, “Collagen-based biomaterials for tissue engineering applications,” Materials, vol. 3, no. 3, pp. 1863–1887, 2010, doi: https://doi.org/10.3390/ma3031863.

    Article  CAS  PubMed Central  Google Scholar 

  123. M. D. Shoulders and R. T. Raines, “Collagen Structure and Stability,” Annu Rev Biochem, vol. 78, no. 1, pp. 929–958, 2009, doi: https://doi.org/10.1146/annurev.biochem.77.032207.120833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. L. Ghasemi-Mobarakeh et al., “Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering,” J Tissue Eng Regen Med, vol. 5, no. 4, pp. e17–e35, 2011, doi: https://doi.org/https://doi.org/10.1002/term.383.

    Article  CAS  PubMed  Google Scholar 

  125. Mathangi Ramakrishnan K, Babu M, Mathivanan, Jayaraman V, Shankar J. Advantages of collagen based biological dressings in the management of superficial and superficial partial thickness burns in children. Ann Burns Fire Disasters. 2013 Jun 30;26(2):98-104. PMID: 24133405; PMCID: PMC3793887.

    Google Scholar 

  126. S. Chattopadhyay and R. T. Raines, “Collagen-based biomaterials for wound healing,” Biopolymers, vol. 101, no. 8, pp. 821–833, 2014, doi: https://doi.org/https://doi.org/10.1002/bip.22486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. L. Rather, S. Akhter, P. Qazi, and F. Mohammad, “Biofunctionalization of Various Textile Materials Using Enzyme Biotechnology as a Green Chemistry Alternative: Improvements and Innovations,” 2018, pp. 263–276. doi: https://doi.org/10.1007/978-981-13-1933-4_13.

  128. R. Ganceviciene, A. I. Liakou, A. Theodoridis, E. Makrantonaki, and C. C. Zouboulis, “Skin anti-aging strategies,” Dermatoendocrinol, vol. 4, no. 3, pp. 308–319, 2012, doi: https://doi.org/10.4161/derm.22804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. A. Jahandideh, M. Ashkani, and N. Moini, “Biopolymers in textile industries,” 2021, pp. 193–218. doi: https://doi.org/10.1016/B978-0-12-819240-5.00008-0.

  130. S. Feroz, N. Muhammad, J. Ratnayake, and G. Dias, “Keratin - Based materials for biomedical applications,” Bioact Mater, vol. 5, no. 3, pp. 496–509, 2020, doi: https://doi.org/https://doi.org/10.1016/j.bioactmat.2020.04.007.

    Article  PubMed  PubMed Central  Google Scholar 

  131. McKittrick, J., Chen, PY., Bodde, S.G. et al. The Structure, Functions, and Mechanical Properties of Keratin. JOM 64, 449–468 (2012). https://doi.org/10.1007/s11837-012-0302-8

  132. H. Idrees, S. Z. J. Zaidi, A. Sabir, R. U. Khan, X. Zhang, and S. U. Hassan, “A review of biodegradable natural polymer-based nanoparticles for drug delivery applications,” Nanomaterials, vol. 10, no. 10. MDPI AG, pp. 1–22, Oct. 01, 2020. doi: https://doi.org/10.3390/nano10101970.

  133. A. Shavandi, T. H. Silva, A. A. Bekhit, and A. E.-D. A. Bekhit, “Keratin: dissolution, extraction and biomedical application,” Biomater. Sci., vol. 5, no. 9, pp. 1699–1735, 2017, doi: https://doi.org/10.1039/C7BM00411G.

    Article  CAS  PubMed  Google Scholar 

  134. P. Sierpinski et al., “The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves,” Biomaterials, vol. 29, no. 1, pp. 118–128, 2008, doi: https://doi.org/https://doi.org/10.1016/j.biomaterials.2007.08.023.

    Article  CAS  PubMed  Google Scholar 

  135. N. Arivithamani, A. Soloman, M. Senthilkumar, and G. D. V R, “Keratin hydrolysate as an exhausting agent in textile reactive dyeing process,” Clean Technol Environ Policy, vol. 16, May 2014, doi: https://doi.org/10.1007/s10098-014-0718-7.

  136. S. M. A. El-Ola and N. A. A. Elsayed, “Utilization of keratin hydrolysate of wool waste fibre for free-salt dyeing of viscose fabric,” J Eng Fibre Fabr, vol. 17, p. 15589250221097080, 2022, doi: https://doi.org/10.1177/15589250221097079.

    Article  CAS  Google Scholar 

  137. W. Ye, M. Qin, R. Qiu, and J. Li, “Keratin-based wound dressings: From waste to wealth,” Int J Biol Macromol, vol. 211, pp. 183–197, 2022, doi: https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.04.216.

    Article  CAS  PubMed  Google Scholar 

  138. J. M. Cardamone, “9 - Flame resistant wool and wool blends,” in Handbook of Fire Resistant Textiles, F. S. Kilinc, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2013, pp. 245–271. doi: https://doi.org/10.1533/9780857098931.2.245.

  139. F. Allafi et al., “Advancements in Applications of Natural Wool Fibre: Review,” Journal of Natural Fibres, vol. 19, no. 2, pp. 497–512, 2022, doi: https://doi.org/10.1080/15440478.2020.1745128.

    Article  CAS  Google Scholar 

  140. T. Tesfaye, B. Sithole, and D. Ramjugernath, “Valorisation of chicken feathers: a review on recycling and recovery route—current status and future prospects,” Clean Technol Environ Policy, vol. 19, no. 10, pp. 2363–2378, 2017, doi: https://doi.org/10.1007/s10098-017-1443-9.

    Article  Google Scholar 

  141. T. K. Kumawat, A. Sharma, V. Sharma, and S. Chandra, “Keratin Waste: The Biodegradable Polymers,” in Keratin, M. Blumenberg, Ed., Rijeka: IntechOpen, 2018. doi: https://doi.org/10.5772/intechopen.79502.

  142. S. Farris, J. Song, and Q. Huang, “Alternative Reaction Mechanism for the Cross-Linking of Gelatin with Glutaraldehyde,” J Agric Food Chem, vol. 58, no. 2, pp. 998–1003, Jan. 2010, doi: https://doi.org/10.1021/jf9031603.

    Article  CAS  PubMed  Google Scholar 

  143. L. Guo, R. H. Colby, C. P. Lusignan, and A. M. Howe, “Physical Gelation of Gelatin Studied with Rheo-Optics,” Macromolecules, vol. 36, no. 26, pp. 10009–10020, Dec. 2003, doi: https://doi.org/10.1021/ma034266c.

    Article  CAS  Google Scholar 

  144. M. C. Gómez-Guillén, B. Giménez, M. E. López-Caballero, and M. P. Montero, “Functional and bioactive properties of collagen and gelatin from alternative sources: A review,” Food Hydrocoll, vol. 25, no. 8, pp. 1813–1827, 2011, doi: https://doi.org/https://doi.org/10.1016/j.foodhyd.2011.02.007.

    Article  CAS  Google Scholar 

  145. M. J. Dille, M. N. Hattrem, and K. I. Draget, “Bioactively filled gelatin gels; challenges and opportunities,” Food Hydrocoll, vol. 76, pp. 17–29, 2018, doi: https://doi.org/https://doi.org/10.1016/j.foodhyd.2016.12.028.

    Article  CAS  Google Scholar 

  146. M. A. Sakr et al., “Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering,” J Biomed Mater Res A, vol. 110, no. 3, pp. 708–724, 2022, doi: https://doi.org/https://doi.org/10.1002/jbm.a.37310.

    Article  CAS  PubMed  Google Scholar 

  147. Y. Gao, Y. Wang, Y. Wang, and W. Cui, “Fabrication of Gelatin-Based Electrospun Composite Fibres for Anti-Bacterial Properties and Protein Adsorption,” Mar Drugs, vol. 14, p. 192, May 2016, doi: https://doi.org/10.3390/md14100192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. X. Li et al., “3D culture of chondrocytes in gelatin hydrogels with different stiffness,” Polymers (Basel), vol. 8, no. 8, Jul. 2016, doi: https://doi.org/10.3390/polym8080269.

  149. R. Gharibi, A. Shaker, A. Rezapour-Lactoee, and S. Agarwal, “Antibacterial and Biocompatible Hydrogel Dressing Based on Gelatin- and Castor-Oil-Derived Biocidal Agent,” ACS Biomater Sci Eng, vol. 7, no. 8, pp. 3633–3647, Aug. 2021, doi: https://doi.org/10.1021/acsbiomaterials.1c00706.

    Article  CAS  PubMed  Google Scholar 

  150. W. **ao et al., “Fabrication and characterization of silk microfibre-reinforced methacrylated gelatin hydrogel with tunable properties,” J Biomater Sci Polym Ed, vol. 29, no. 17, pp. 2068–2082, Nov. 2018, doi: https://doi.org/10.1080/09205063.2018.1493022.

    Article  CAS  PubMed  Google Scholar 

  151. A. Bandyopadhyay, S. K. Chowdhury, S. Dey, J. C. Moses, and B. B. Mandal, “Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions,” J Indian Inst Sci, vol. 99, no. 3, pp. 445–487, 2019, doi: https://doi.org/10.1007/s41745-019-00114-y.

    Article  Google Scholar 

  152. S. C. Kundu et al., “Nonmulberry silk biopolymers,” Biopolymers, vol. 97, no. 6, pp. 455–467, 2012, doi: https://doi.org/https://doi.org/10.1002/bip.22024.

    Article  CAS  PubMed  Google Scholar 

  153. Dr. S. Tridico, “Natural animal textile fibres: Structure, characteristics and identification,” 2009, pp. 27–67. doi: https://doi.org/10.1533/9781845695651.1.27.

  154. L.-D. Koh et al., “Structures, mechanical properties and applications of silk fibroin materials,” Prog Polym Sci, vol. 46, pp. 86–110, 2015, doi: https://doi.org/https://doi.org/10.1016/j.progpolymsci.2015.02.001.

    Article  CAS  Google Scholar 

  155. Q. Yuan, J. Yao, X. Chen, L. Huang, and Z. Shao, “The preparation of high performance silk fibre/fibroin composite,” Polymer (Guildf), vol. 51, pp. 4843–4849, May 2010, doi: https://doi.org/10.1016/j.polymer.2010.08.042.

    Article  CAS  Google Scholar 

  156. A. Nova, S. Keten, N. M. Pugno, A. Redaelli, and M. J. Buehler, “Molecular and Nanostructural Mechanisms of Deformation, Strength and Toughness of Spider Silk Fibrils,” Nano Lett, vol. 10, no. 7, pp. 2626–2634, Jul. 2010, doi: https://doi.org/10.1021/nl101341w.

    Article  CAS  PubMed  Google Scholar 

  157. M. Parvinzadeh Gashti, “Surface modification of synthetic fibres to improve performance: Recent approaches,” Global Journal of Physical Chemistry, vol. 3, pp. 1–10, May 2012.

    Google Scholar 

  158. T. Bawazeer and M. Alsoufi, “Surface Characterization and Properties of Raw and Degummed (Bombyx mori) Silk Fibroin Fibre toward High Performance Applications of ‘Kisswa Al-Kabba,’” Int J Curr Res, vol. 9, pp. 48335–48343, May 2017.

    CAS  Google Scholar 

  159. J. G. Hardy, L. M. Römer, and T. R. Scheibel, “Polymeric materials based on silk proteins,” Polymer (Guildf), vol. 49, no. 20, pp. 4309–4327, 2008, doi: https://doi.org/https://doi.org/10.1016/j.polymer.2008.08.006.

    Article  CAS  Google Scholar 

  160. M. Heim, D. Keerl, and T. Scheibel, “Spider Silk: From Soluble Protein to Extraordinary Fibre,” Angewandte Chemie International Edition, vol. 48, no. 20, pp. 3584–3596, 2009, doi: https://doi.org/https://doi.org/10.1002/anie.200803341.

    Article  CAS  PubMed  Google Scholar 

  161. C. Vierra, Y. Hsia, E. Gnesa, S. Tang, and F. Jeffery, “Spider Silk Composites and Applications,” 2011. doi: https://doi.org/10.5772/22894.

  162. S. Tansaz and A. R. Boccaccini, “Biomedical applications of soy protein: A brief overview,” J Biomed Mater Res A, vol. 104, no. 2, pp. 553–569, 2016, doi: https://doi.org/https://doi.org/10.1002/jbm.a.35569.

    Article  CAS  PubMed  Google Scholar 

  163. E. G. Hammond, P. A. Murphy, and L. Johnson, “SOY (SOYA) BEANS | Properties and Analysis,” in Encyclopedia of Food Sciences and Nutrition, 2003, pp. 5389–5392. doi: https://doi.org/10.1016/B0-12-227055-X/01111-1.

  164. A. Shankar, A.-F. M. Seyam, and S. M. Hudson, “Electrospinning of Soy Protein Fibres and their Compatibility with Synthetic Polymers,” 2013. [Online]. Available: www.electrosols.com

  165. F. H. H. Abdellatif and M. M. Abdellatif, “Chapter 30 - Utilization of sustainable biopolymers in textile processing,” in Green Chemistry for Sustainable Textiles, N. Ibrahim and C. M. Hussain, Eds., in The Textile Institute Book Series. Woodhead Publishing, 2021, pp. 453–469. doi: https://doi.org/10.1016/B978-0-323-85204-3.00013-0.

  166. B. Younes, “Classification, characterization, and the production processes of biopolymers used in the textiles industry,” The Journal of The Textile Institute, vol. 108, no. 5, pp. 674–682, 2017, doi: https://doi.org/10.1080/00405000.2016.1180731.

    Article  Google Scholar 

  167. S. Mowafi, H. El-Sayed, and M. Abou Taleb, “Utilization of Proteinic Biopolymers: Current Status and Future Prospects,” Journal of Textiles, Coloration and Polymer Science, vol. 0, no. 0, pp. 0–0, Nov. 2018, doi: https://doi.org/10.21608/jtcps.2018.5007.1002.

  168. C. Holt, J. A. Carver, H. Ecroyd, and D. C. Thorn, “Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods1,” Journal of Dairy Science, vol. 96, no. 10. pp. 6127–6146, Oct. 2013. doi: https://doi.org/10.3168/jds.2013-6831.

    Article  CAS  PubMed  Google Scholar 

  169. S. Lei, C. Jianwei, and Z. Meiling, “A Study of Wearabilities of Milk Protein Fibre Fabric,” Journal of Applied Science and Engineering Innovation, vol. 4, no. 4, pp. 141–143, 2017.

    Google Scholar 

  170. K. Thangavelu and K. B. Subramani, “Sustainable biopolymer fibres—production, properties and applications,” in Environmental Footprints and Eco-Design of Products and Processes, Springer, 2016, pp. 109–140. doi: https://doi.org/10.1007/978-981-10-0522-0_5.

  171. N. B. Guerra, G. Sant’Ana Pegorin, M. H. Boratto, N. R. de Barros, C. F. de Oliveira Graeff, and R. D. Herculano, “Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis,” Materials Science and Engineering C, vol. 126. Elsevier Ltd, Jul. 01, 2021. doi: https://doi.org/10.1016/j.msec.2021.112126.

  172. M. Ferreira, R.J. Mendonça, J. Coutinho-Netto & M. Mulato (2009). Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Brazilian Journal of Physics, 39(3), 564–569. https://doi.org/10.1590/S0103-97332009000500010

  173. T. Kurian and N. M. Mathew, “Natural Rubber: Production, Properties and Applications,” Biopolymers: Biomedical and Environmental Applications, pp. 403–436, May 2011, doi: https://doi.org/10.1002/9781118164792.ch14.

  174. D. Vadicherla Thilak and Saravanan, “Textiles and Apparel Development Using Recycled and Reclaimed Fibres,” in Roadmap to Sustainable Textiles and Clothing: Eco-friendly Raw Materials, Technologies, and Processing Methods, S. S. Muthu, Ed., Singapore: Springer Singapore, 2014, pp. 139–160. doi: https://doi.org/10.1007/978-981-287-065-0_5.

  175. D. G. K. Dissanayake, D. U. Weerasinghe, L. M. Thebuwanage, and U. A. A. N. Bandara, “An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber,” Journal of Building Engineering, vol. 33, p. 101606, 2021, doi: https://doi.org/https://doi.org/10.1016/j.jobe.2020.101606.

    Article  Google Scholar 

  176. X. Chen et al., “Environmentally Friendly Flexible Strain Sensor from Waste Cotton Fabrics and Natural Rubber Latex,” Polymers (Basel), vol. 11, no. 3, 2019, doi: https://doi.org/10.3390/polym11030404.

  177. Kurian, T. and Mathew, N.M. (2011). Natural Rubber: Production, Properties and Applications. In Biopolymers (eds S. Kalia and L. Avérous). https://doi.org/10.1002/9781118164792.ch14

  178. W. Smitthipong, S. Suethao, D. Shah, and F. Vollrath, “Interesting green elastomeric composites: Silk textile reinforced natural rubber,” Polym Test, vol. 55, pp. 17–24, 2016, doi: https://doi.org/https://doi.org/10.1016/j.polymertesting.2016.08.007.

    Article  CAS  Google Scholar 

  179. B. Moonlek, E. Wimolmala, T. Markpin, N. Sombatsompop, and K. Saenboonruang, “Enhancing electromagnetic interference shielding effectiveness for radiation vulcanized natural rubber latex composites containing multiwalled carbon nanotubes and silk textile,” Polym Compos, vol. 41, no. 10, pp. 3996–4009, 2020, doi: https://doi.org/https://doi.org/10.1002/pc.25687.

    Article  CAS  Google Scholar 

  180. Y. Yang, M. Li, and S. Fu, “Monodispersed colored polymer latex particles with film formation and chemical crosslinking for application on textile binder-free printing,” Colloids Surf A Physicochem Eng Asp, vol. 619, p. 126527, 2021, doi: https://doi.org/https://doi.org/10.1016/j.colsurfa.2021.126527.

    Article  CAS  Google Scholar 

  181. N. H. A. Rahman, N. A. Rahman, S. A. Aziz, and M. A. Hassan, “Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils,” Bioresources, vol. 8, no. 4, pp. 6136–6150, 2013, doi: https://doi.org/10.15376/biores.8.4.6136-6150.

    Article  Google Scholar 

  182. W. O. S. Doherty, P. Mousavioun, and C. M. Fellows, “Value-adding to cellulosic ethanol: Lignin polymers,” Ind Crops Prod, vol. 33, no. 2, pp. 259–276, 2011, doi: https://doi.org/10.1016/j.indcrop.2010.10.022.

    Article  CAS  Google Scholar 

  183. J. Pérez, J. Muñoz-Dorado, T. De La Rubia, and J. Martínez, “Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview,” International Microbiology, vol. 5, no. 2, pp. 53–63, 2002, doi: https://doi.org/10.1007/s10123-002-0062-3.

    Article  CAS  PubMed  Google Scholar 

  184. S. Lin and C. Dence, “Methods in Lignin Chemistry,” Berlin Heidelberg: Springer, vol. 53, 1989.

    Google Scholar 

  185. E. Adler, “Lignin chemistry? Past, present and future.,” Wood Sci Technol, vol. 11, no. 3, pp. 169–218, 1977.

    Article  CAS  Google Scholar 

  186. Q. Li et al., “Molecular weight and uniformity define the mechanical performance of lignin-based carbon fibre,” J Mater Chem A Mater, vol. 5, no. 25, pp. 12740–12746, 2017, doi: https://doi.org/10.1039/c7ta01187c.

    Article  CAS  Google Scholar 

  187. Q. Li, S. **e, W. K. Serem, M. T. Naik, L. Liu, and J. S. Yuan, “Quality carbon fibres from fractionated lignin,” Green Chemistry, vol. 19, no. 7, pp. 1628–1634, 2017, doi: https://doi.org/10.1039/c6gc03555h.

    Article  CAS  Google Scholar 

  188. M. Zhang and A. A. Ogale, “Carbon fibres from dry-spinning of acetylated softwood kraft lignin,” Carbon N Y, vol. 69, no. April 2014, pp. 626–629, 2014, doi: https://doi.org/10.1016/j.carbon.2013.12.015.

  189. M. Zhang and A. A. Ogale, “Effect of temperature and concentration of acetylated-lignin solutions on dry-spinning of carbon fibre precursors,” J Appl Polym Sci, vol. 133, no. 45, pp. 1–10, 2016, doi: https://doi.org/10.1002/app.43663.

    Article  CAS  Google Scholar 

  190. S. Kubo and J. F. Kadla, “Lignin-based carbon fibres: Effect of synthetic polymer blending on fibre properties,” J Polym Environ, vol. 13, no. 2, pp. 97–105, 2005, doi: https://doi.org/10.1007/s10924-005-2941-0.

    Article  CAS  Google Scholar 

  191. X. Dong, M. Dong, Y. Lu, A. Turley, T. **, and C. Wu, “Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production,” Ind Crops Prod, vol. 34, no. 3, pp. 1629–1634, 2011, doi: https://doi.org/10.1016/j.indcrop.2011.06.002.

    Article  CAS  Google Scholar 

  192. H. Li and L. Peng, “Antimicrobial and antioxidant surface modification of cellulose fibres using layer-by-layer deposition of chitosan and lignosulfonates,” Carbohydr Polym, vol. 124, pp. 35–42, 2015, doi: https://doi.org/10.1016/j.carbpol.2015.01.071.

    Article  CAS  PubMed  Google Scholar 

  193. W. Fang, S. Yang, X.-L. Wang, T.-Q. Yuan, and R.-C. Sun, “Manufacture and application of lignin-based carbon fibres (LCFs) and lignin-based carbon nanofibres (LCNFs),” Green Chemistry, vol. 19, no. 8, pp. 1794–1827, 2017, doi: https://doi.org/10.1039/c6gc03206k.

    Article  CAS  Google Scholar 

  194. H. Mao et al., “Fast preparation of carbon spheres from enzymatic hydrolysis lignin: Effects of hydrothermal carbonization conditions,” Sci Rep, vol. 8, no. 1, pp. 2–11, 2018, doi: https://doi.org/10.1038/s41598-018-27777-4.

    Article  CAS  Google Scholar 

  195. Y. Shi et al., “Biochemical investigation of kraft lignin degradation by pandoraea sp. B-6 isolated from bamboo slips,” Bioprocess Biosyst Eng, vol. 36, no. 12, pp. 1957–1965, 2013, doi: https://doi.org/10.1007/s00449-013-0972-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. W. Boerjan, J. Ralph, and M. Baucher, “Lignin Biosynthesis,” Annu Rev Plant Biol, vol. 54, no. February, pp. 519–546, 2003, doi: https://doi.org/10.1146/annurev.arplant.54.031902.134938.

    Article  CAS  PubMed  Google Scholar 

  197. N. E. El Mansouri, A. Pizzi, and J. Salvadó, “Lignin-based wood panel adhesives without formaldehyde,” Holz als Roh - und Werkstoff, vol. 65, no. 1, pp. 65–70, 2007, doi: https://doi.org/10.1007/s00107-006-0130-z.

    Article  CAS  Google Scholar 

  198. A. Vishtal and A. Kraslawski, “Challenges in industrial applications of technical lignins,” Bioresources, vol. 6, no. 3, pp. 3547–3568, 2011, doi: https://doi.org/10.15376/biores.6.3.vishtal.

    Article  Google Scholar 

  199. J. Marton and T. Marton, “Molecular weight of kraft lignin.,” Tappi J, vol. 47, no. 8, pp. 471–476, 1964.

    Google Scholar 

  200. N. Mandlekar et al., “An Overview on the Use of Lignin and Its Derivatives in Fire Retardant Polymer Systems,” Lignin - Trends and Applications, 2018, doi: https://doi.org/10.5772/intechopen.72963.

    Article  Google Scholar 

  201. R. Franke and L. Schreiber, “Suberin—a biopolyester forming apoplastic plant interfaces,” Curr Opin Plant Biol, vol. 10, no. 3, pp. 252–259, 2007, doi: https://doi.org/https://doi.org/10.1016/j.pbi.2007.04.004.

    Article  CAS  PubMed  Google Scholar 

  202. V. Sollapura, C. Delude, F. Domergue, and O. Rowland, “Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier,” Plant Cell Rep, vol. 34, May 2014, doi: https://doi.org/10.1007/s00299-014-1727-z.

  203. J. Graça, “Suberin: The biopolyester at the frontier of plants,” Frontiers in Chemistry, vol. 3, no. OCT. Frontiers Media S. A, 2015. doi: https://doi.org/10.3389/fchem.2015.00062.

  204. O. Serra et al., “CYP86A33-Targeted Gene Silencing in Potato Tuber Alters Suberin Composition, Distorts Suberin Lamellae, and Impairs the Periderm’s Water Barrier Function,” Plant Physiol, vol. 149, pp. 1050–1060, May 2009, doi: https://doi.org/10.1104/pp.108.127183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Z. Chen et al., “Cotton green fibre promotes suberin synthesis interfering cellulose deposition in the secondary cell wall,” Ind Crops Prod, vol. 194, p. 116346, 2023, doi: https://doi.org/https://doi.org/10.1016/j.indcrop.2023.116346.

    Article  CAS  Google Scholar 

  206. C. Nawrath, “The Biopolymers Cutin and Suberin,” Arabidopsis Book, vol. 1, p. e0021, Jan. 2002, doi: https://doi.org/10.1199/tab.0021.

    Article  PubMed  PubMed Central  Google Scholar 

  207. S. J. Vishwanath, C. Delude, F. Domergue, and O. Rowland, “Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier,” Plant Cell Rep, vol. 34, no. 4, pp. 573–586, 2015, doi: https://doi.org/10.1007/s00299-014-1727-z.

    Article  CAS  PubMed  Google Scholar 

  208. I. L. Liakos et al., “Suberin/trans-Cinnamaldehyde Oil Nanoparticles with Antimicrobial Activity and Anticancer Properties When Loaded with Paclitaxel,” ACS Appl Bio Mater, vol. 2, no. 8, pp. 3484–3497, Aug. 2019, doi: https://doi.org/10.1021/acsabm.9b00408.

    Article  CAS  PubMed  Google Scholar 

  209. S. J. Vishwanath et al., “Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties ,” Plant Physiol, vol. 163, no. 3, pp. 1118–1132, Nov. 2013, doi: https://doi.org/10.1104/pp.113.224410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. B. Alvarez Chavez, V. Raghavan, and B. Tartakovsky, “A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies,” RSC Advances, vol. 12, no. 25. Royal Society of Chemistry, pp. 16105–16118, Jun. 01, 2022. doi: https://doi.org/10.1039/d1ra08796g.

  211. S. K. Bhatia, “Microbial Biopolymers: Trends in Synthesis, Modification, and Applications,” Polymers (Basel), vol. 15, no. 6, p. 1364, Mar. 2023, doi: https://doi.org/10.3390/polym15061364.

    Article  CAS  PubMed  Google Scholar 

  212. R. Mazzoli, F. Bosco, I. Mizrahi, E. A. Bayer, and E. Pessione, “Towards lactic acid bacteria-based biorefineries,” Biotechnol Adv, vol. 32, no. 7, pp. 1216–1236, 2014, doi: https://doi.org/https://doi.org/10.1016/j.biotechadv.2014.07.005.

    Article  CAS  PubMed  Google Scholar 

  213. M. C. Coelho, F. X. Malcata, and C. C. G. Silva, “Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions,” Foods, vol. 11, no. 15, 2022, doi: https://doi.org/10.3390/foods11152276.

  214. S. Salminen et al., “Demonstration of safety of probiotics — a review,” Int J Food Microbiol, vol. 44, no. 1, pp. 93–106, 1998, doi: https://doi.org/https://doi.org/10.1016/S0168-1605(98)00128-7.

    Article  CAS  PubMed  Google Scholar 

  215. M. P. Mokoena, “Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review,” Molecules, vol. 22, no. 8, 2017, doi: https://doi.org/10.3390/molecules22081255.

  216. M. L. Werning et al., “Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals,” Foods, vol. 11, no. 9, 2022, doi: https://doi.org/10.3390/foods11091284.

  217. L. Settanni and G. Moschetti, “Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits,” Food Microbiol, vol. 27, no. 6, pp. 691–697, 2010, doi: https://doi.org/https://doi.org/10.1016/j.fm.2010.05.023.

    Article  CAS  PubMed  Google Scholar 

  218. C. M. Nicolescu et al., “Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application,” Polymers, vol. 15, no. 6. MDPI, Mar. 01, 2023. doi: https://doi.org/10.3390/polym15061539.

  219. M. Mochizuki, “TEXTILE APPLICATIONS,” in Poly(Lactic Acid), John Wiley & Sons, Ltd, 2022, pp. 619–629. doi: https://doi.org/10.1002/9781119767480.ch27.

  220. D. W. Farrington, J. Lunt, S. Davies, and R. S. Blackburn, “6 - Poly(lactic acid) fibres,” in Biodegradable and Sustainable Fibres, R. S. Blackburn, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2005, pp. 191–220. doi: https://doi.org/10.1533/9781845690991.191.

  221. M. Vert et al., “Terminology for biorelated polymers and applications (IUPAC recommendations 2012),” Pure and Applied Chemistry, vol. 84, no. 2, pp. 377–410, 2012, doi: https://doi.org/10.1351/PAC-REC-10-12-04.

    Article  CAS  Google Scholar 

  222. R. Auras, B. Harte, and S. Selke, “An Overview of Polylactides as Packaging Materials,” Macromol Biosci, vol. 4, no. 9, pp. 835–864, 2004, doi: https://doi.org/https://doi.org/10.1002/mabi.200400043.

    Article  CAS  PubMed  Google Scholar 

  223. Y. Yang et al., “Poly(lactic acid) fibres, yarns and fabrics: Manufacturing, properties and applications,” Textile Research Journal, vol. 91, no. 13–14. SAGE Publications Ltd, pp. 1641–1669, Jul. 01, 2021. doi: https://doi.org/10.1177/0040517520984101.

  224. A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices — A review,” Biotechnol Adv, vol. 30, no. 1, pp. 321–328, 2012, doi: https://doi.org/https://doi.org/10.1016/j.biotechadv.2011.06.019.

    Article  CAS  PubMed  Google Scholar 

  225. V. Siracusa, P. Rocculi, S. Romani, and M. D. Rosa, “Biodegradable polymers for food packaging: a review,” Trends Food Sci Technol, vol. 19, no. 12, pp. 634–643, 2008, doi: https://doi.org/https://doi.org/10.1016/j.tifs.2008.07.003.

    Article  CAS  Google Scholar 

  226. D. Garlotta, “A Literature Review of Poly(Lactic Acid),” J Polym Environ, vol. 9, no. 2, pp. 63–84, 2001, doi: https://doi.org/10.1023/A:1020200822435.

    Article  CAS  Google Scholar 

  227. A. Z. Naser, I. Deiab, and B. M. Darras, “Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review,” RSC Advances, vol. 11, no. 28. Royal Society of Chemistry, pp. 17151–17196, May 02, 2021. doi: https://doi.org/10.1039/d1ra02390j.

  228. S. Jacobsen, H. Fritz, P. Degee, P. Dubois, and R. Jérôme, “Polylactide (PLA) - A new way of production,” Polym Eng Sci, vol. 39, pp. 1311–1319, May 2004, doi: https://doi.org/10.1002/pen.11518.

    Article  Google Scholar 

  229. B. Bax and J. Müssig, “Impact and tensile properties of PLA/Cordenka and PLA/flax composites,” Compos Sci Technol, vol. 68, no. 7, pp. 1601–1607, 2008, doi: https://doi.org/https://doi.org/10.1016/j.compscitech.2008.01.004.

    Article  CAS  Google Scholar 

  230. E. T. H. Vink et al., “The sustainability of nature worksTM polylactide polymers and ingeoTM polylactide fibres: An update of the future. Initiated by the 1st International Conference on Bio-based Polymers (ICBP 2003), November 12–14 2003, Saitama, Japan,” in Macromolecular Bioscience, Jun. 2004, pp. 551–564. doi: https://doi.org/10.1002/mabi.200400023.

  231. M. Mochizuki, “Properties and Application of Aliphatic Polyester Products,” in Cheminform, 2005. doi: https://doi.org/10.1002/3527600035.bpol4001.

    Article  Google Scholar 

  232. O. Avinc and A. Khoddami, “Overview of Poly(lactic acid) (PLA) Fibre,” Fibre Chemistry, vol. 41, no. 6, pp. 391–401, 2009, doi: https://doi.org/10.1007/s10692-010-9213-z.

    Article  CAS  Google Scholar 

  233. M. Murariu and P. Dubois, “PLA composites: From production to properties,” Adv Drug Deliv Rev, vol. 107, pp. 17–46, 2016, doi: https://doi.org/https://doi.org/10.1016/j.addr.2016.04.003.

    Article  CAS  PubMed  Google Scholar 

  234. T. Palmeiro-Sánchez, V. O’Flaherty, and P. N. L. Lens, “Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future,” J Biotechnol, vol. 348, pp. 10–25, 2022, doi: https://doi.org/https://doi.org/10.1016/j.jbiotec.2022.03.001.

    Article  CAS  PubMed  Google Scholar 

  235. Z. Li, J. Yang, and X. J. Loh, “Polyhydroxyalkanoates: Opening doors for a sustainable future,” NPG Asia Materials, vol. 8, no. 4. Nature Publishing Group, Apr. 22, 2016. doi: https://doi.org/10.1038/am.2016.48.

  236. S. Kopf, D. Åkesson, and M. Skrifvars, “Textile Fibre Production of Biopolymers–A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications,” Polymer Reviews, vol. 63, no. 1. Taylor and Francis Ltd., pp. 200–245, 2023. doi: https://doi.org/10.1080/15583724.2022.2076693.

  237. A. Surendran, M. Lakshmanan, J. Y. Chee, A. M. Sulaiman, D. Van Thuoc, and K. Sudesh, “Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils?,” Front Bioeng Biotechnol, vol. 8, 2020, doi: https://doi.org/10.3389/fbioe.2020.00169.

  238. A. Rodríguez-Contreras, Y. García, J. M. Manero, and E. Rupérez, “Antibacterial PHAs coating for titanium implants,” Eur Polym J, vol. 90, pp. 66–78, 2017, doi: https://doi.org/https://doi.org/10.1016/j.eurpolymj.2017.03.004.

    Article  CAS  Google Scholar 

  239. L. Marang, M. C. M. van Loosdrecht, and R. Kleerebezem, “Combining the enrichment and accumulation step in non-axenic PHA production: Cultivation of Plasticicumulans acidivorans at high volume exchange ratios,” J Biotechnol, vol. 231, pp. 260–267, 2016, doi: https://doi.org/https://doi.org/10.1016/j.jbiotec.2016.06.016.

    Article  CAS  PubMed  Google Scholar 

  240. P. Rekhi, M. Goswami, S. Ramakrishna, and M. Debnath, “Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future,” Crit Rev Biotechnol, vol. 42, no. 5, pp. 668–692, 2022, doi: https://doi.org/10.1080/07388551.2021.1960265.

    Article  CAS  PubMed  Google Scholar 

  241. I. Chodák and R. S. Blackburn, “7 - Poly(hydroxyalkanoates) and poly(caprolactone),” in Biodegradable and Sustainable Fibres, R. S. Blackburn, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2005, pp. 221–244. doi: https://doi.org/10.1533/9781845690991.221.

  242. G. Mármol, C. Gauss, and R. Fangueiro, “Potential of cellulose microfibres for PHA and PLA biopolymers reinforcement,” Molecules, vol. 25, no. 20, Oct. 2020, doi: https://doi.org/10.3390/molecules25204653.

  243. L. G. Griffith and G. Naughton, “Tissue engineering - Current challenges and expanding opportunities,” Science (1979), vol. 295, no. 5557, 2002, doi: https://doi.org/10.1126/science.1069210.

    Article  Google Scholar 

  244. B.D.Ratner, “An Introduction to Materials in Medicine,” in Biomaterials Science, 2nd ed.London: Elsevier Academic Press, 2020, pp. 1616–1651.

    Google Scholar 

  245. P. X. Ma, “Scaffolds for tissue fabrication,” Materials Today, vol. 7, no. 5, pp. 30–40, 2004, doi: https://doi.org/10.1016/S1369-7021(04)00233-0.

    Article  CAS  Google Scholar 

  246. P. A. Holmes, Developments in Crystalline Polymers-2. London, UK,: Elsevier Applied Science, 1987.

    Google Scholar 

  247. W. D. Luzier, “Materials derived from biomass/biodegradable materials,” Proc Natl Acad Sci U S A, vol. 89, no. 3, pp. 839–842, 1992, doi: https://doi.org/10.1073/pnas.89.3.839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. K. Kuntanoo, S. Promkotra, P. Kaewkannetra, and a Material, “Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate ( PHBV ) Blended with Natural Rubber in Soil Environment,” World Acad Sci Eng Technol, vol. 7, no. 12, pp. 1799–1803, 2013.

    Google Scholar 

  249. E. Leroy, I. Petit, J. L. Audic, G. Colomines, and R. Deterre, “Rheological characterization of a thermally unstable bioplastic in injection molding conditions,” Polym Degrad Stab, vol. 97, no. 10, pp. 1915–1921, 2012, doi: https://doi.org/10.1016/j.polymdegradstab.2012.03.021.

    Article  CAS  Google Scholar 

  250. F. Biddlestone, A. Harris, J. N. Hay, and T. Hammond, “The physical ageing of amorphous poly(hydroxybutyrate),” Polym Int, vol. 39, no. 3, pp. 221–229, 1996, doi: https://doi.org/10.1002/(sici)1097-0126(199603)39:3<221::aid-pi511>3.0.co;2-o.

    Article  CAS  Google Scholar 

  251. H. Liu, Z. Gao, X. Hu, Z. Wang, and T. Su, “Blending Modification of PHBV / PCL and its Biodegradation by Pseudomonas mendocina,” J Polym Environ, 2016, doi: https://doi.org/10.1007/s10924-016-0795-2.

    Article  Google Scholar 

  252. M. Avella, E. Martuscelli, and M. Raimo, “Properties of blends and composites based on poly ( 3-hydroxy ) butyrate ( PHB ) and poly ( 3-hydroxybutyrate-hydroxyvalerate ) ( PHBV ) copolymers,” vol. 5, pp. 523–545, 2000.

    Google Scholar 

  253. H. Mitomo, Y. Watanabe, and I. Ishigaki, “Radiation-induced degradation of poly ( 3- hydroxybutyrate ) and the copolymer poly ( 3-,” vol. 45, pp. 11–17, 1994.

    Google Scholar 

  254. F. Sarasini et al., “Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV / PBAT Matrix Filled with Coffee Silverskin,” Polymers (Basel), vol. 10, pp. 1–16, 2018, doi: https://doi.org/10.3390/polym10111256.

    Article  CAS  Google Scholar 

  255. M. A. Vigil Fuentes, S. Thakur, F. Wu, M. Misra, S. Gregori, and A. K. Mohanty, “Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication,” Sci Rep, vol. 10, no. 1, pp. 1–12, 2020, doi: https://doi.org/10.1038/s41598-020-68331-5.

  256. M. P. Arrieta, M. D. Samper, M. Aldas, and J. López, “On the use of PLA-PHB blends for sustainable food packaging applications,” Materials, vol. 10, no. 9, pp. 1–26, 2017, doi: https://doi.org/10.3390/ma10091008.

    Article  CAS  Google Scholar 

  257. Y. K. Dasan, A. H. Bhat, and F. Ahmad, “Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material,” Carbohydr Polym, vol. 157, pp. 1323–1332, 2017, doi: https://doi.org/10.1016/j.carbpol.2016.11.012.

    Article  CAS  PubMed  Google Scholar 

  258. I. Zembouai, M. Kaci, S. Bruzaud, A. Benhamida, Y. M. Corre, and Y. Grohens, “A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing,” Polym Test, vol. 32, no. 5, pp. 842–851, 2013, doi: https://doi.org/10.1016/j.polymertesting.2013.04.004.

    Article  CAS  Google Scholar 

  259. S. P. C. Gonçalves and S. M. Martins-Franchetti, “Action of soil microorganisms on PCL and PHBV blend and films,” J Polym Environ, vol. 18, no. 4, pp. 714–719, 2010, doi: https://doi.org/10.1007/s10924-010-0209-9.

    Article  CAS  Google Scholar 

  260. M. Cunha, B. D. Fernandes, J. A. Covas, A. A. Vicente, and L. Hilliou, “Film blowing of PHBV blends and PHBV-based multilayers for the production of biodegradable packages,” J Appl Polym Sci, vol. 133, no. 2, pp. 1–11, 2016.

    Article  Google Scholar 

  261. A. Antunes, A. Popelka, O. Aljarod, M. K. Hassan, P. Kasak, and A. S. Luyt, “Accelerated Weathering E ff ects on nanocomposites,” 2020.

    Google Scholar 

  262. A. L. Rivera-Briso and Á. Serrano-Aroca, “Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement strategies for advanced applications,” Polymers (Basel), vol. 10, no. 7, pp. 1–28, 2018, doi: https://doi.org/10.3390/polym10070732.

    Article  CAS  Google Scholar 

  263. M. L. Tebaldi, A. L. C. Maia, F. Poletto, F. V. de Andrade, and D. C. F. Soares, “Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility,” J Drug Deliv Sci Technol, vol. 51, no. August 2018, pp. 115–126, 2019, doi: https://doi.org/10.1016/j.jddst.2019.02.007.

  264. L. Jiang and J. Zhang, Biodegradable Polymers and Polymer Blends, no. 2011. Elsevier, 2013. doi: https://doi.org/10.1016/B978-1-4557-2834-3.00006-9.

  265. F. Li et al., “Natural Biodegradable Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging,” J Agric Food Chem, vol. 67, no. 39, pp. 10954–10967, 2019, doi: https://doi.org/10.1021/acs.jafc.9b03110.

    Article  CAS  PubMed  Google Scholar 

  266. G. Valdés-García, C. Millan-Pacheco, and N. Pastor, “Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants,” Biopolymers, 2017.

    Google Scholar 

  267. B. McAdam, M. B. Fournet, P. McDonald, and M. Mojicevic, “Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics,” Polymers (Basel), vol. 12, no. 12, pp. 1–20, 2020, doi: https://doi.org/10.3390/polym12122908.

    Article  CAS  Google Scholar 

  268. R. V. Nonato, P. E. Mantelatto, and C. E. V. Rossell, “Integrated production of biodegradable plastic, sugar and ethanol,” Appl Microbiol Biotechnol, vol. 57, no. 1–2, pp. 1–5, 2001, doi: https://doi.org/10.1007/s002530100732.

    Article  CAS  PubMed  Google Scholar 

  269. D. Sabarinathan, S. P. Chandrika, P. Venkatraman, M. Easwaran, C. S. Sureka, and K. Preethi, “Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection,” Inform Med Unlocked, vol. 11, pp. 61–67, 2018, doi: https://doi.org/https://doi.org/10.1016/j.imu.2018.04.009.

    Article  Google Scholar 

  270. A. J. dos Santos, L. V. Oliveira Dalla Valentina, A. A. Hidalgo Schulz, and M. A. Tomaz Duarte, “From Obtaining to Degradation of PHB:Material Properties. Part I,” Ing Cienc, vol. 13, no. 26, pp. 269–298, 2017, doi: https://doi.org/10.17230/ingciencia.13.26.10.

  271. C. Thapa, P. Shakya, R. Shrestha, S. Pal, and P. Manandhar, “Isolation of Polyhydroxybutyrate (PHB) Producing Bacteria, Optimization of Culture Conditions for PHB production, Extraction and Characterization of PHB,” Nepal Journal of Biotechnology, vol. 6, no. 1, pp. 62–68, 2019, doi: https://doi.org/10.3126/njb.v6i1.22339.

    Article  Google Scholar 

  272. C. S. K. Reddy, R. Ghai, Rashmi, and V. C. Kalia, “Polyhydroxyalkanoates: An overview,” Bioresour Technol, vol. 87, no. 2, pp. 137–146, 2003, doi: https://doi.org/10.1016/S0960-8524(02)00212-2.

  273. V. C. Kalia, S. Ray, S. K. S. Patel, M. Singh, and G. P. Singh, “The dawn of novel biotechnological applications of polyhydroxyalkanoates,” Biotechnological Applications of Polyhydroxyalkanoates, pp. 1–11, 2019, doi: https://doi.org/10.1007/978-981-13-3759-8_1.

  274. F. Rahnama, E. Vasheghani-Farahani, F. Yazdian, and S. A. Shojaosadati, “PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor,” Biochem Eng J, vol. 65, pp. 51–56, 2012, doi: https://doi.org/10.1016/j.bej.2012.03.014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Arif Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, K.R., Akter, S., Nanjeba, M., Mahmud, M.A. (2024). Properties and Performance of Biopolymers in Textile Applications. In: Ahmed, S., Shabbir, M. (eds) Biopolymers in the Textile Industry. Springer, Singapore. https://doi.org/10.1007/978-981-97-0684-6_3

Download citation

Publish with us

Policies and ethics

Navigation