Microbial Technology: Tools for Waste Management; Environmental Sustainability and Environmental Safety

  • Chapter
  • First Online:
Microbial Applications for Environmental Sustainability

Abstract

In the current scenario, land, water, and air are highly polluted with diverse types of the contaminants that deteriorate the human and animal health directly or indirectly. Although most of the pollution is self-generated by mankind due to the establishment of various industries without appropriate norms, unmanaged waste of livestock, municipal solid waste, and excess use of chemicals in agriculture and daily life. The best method to rid off from all types of the pollution and harmful effects are avoid or imposing ban on such type of industrial units and activities. But in modern era it’s not possible to because of always scare of sudden increase in unemployment and huge economical loss. Second alternate is taking advantage of highly efficient diverse types of the microbes such as prokaryotes and eukaryotes. They are excellent bio-degraders of organic waste and recycled the waste to further value-added products. In literature there are so many reports available in which researchers also bio-remediate the soils from high contaminants like heavy metals and toxic pesticides. Additionally, the use of genetically modified microorganisms (GMOs) can help in the conversion of highly toxic chemicals to less harmful. This chapter provides the proper updated information on the state of the art of different waste types and shows how the microorganisms can be effectively used for the waste management (WM) and more environmentally sustainable practices. It also confers the interpretation to the readers about the areas of highly explored and the field where there is still much left to be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Shafy HI, Al-Sulaiman AM, Mansour MSM (2014) Greywater treatment via hybrid integrated systems for unrestricted reuse in Egypt. J Water Process Eng 1:101–107. https://doi.org/10.1016/j.jwpe.2014.04.001

    Article  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediat Biodegrad 3(1):28–39. Available from URL: http://www.sciepub.com/journal/IJEBB

    CAS  Google Scholar 

  • Ahmed S, Abdelhalim H, Rozaik E (2013) Treatment of primary settled wastewater using anaerobic sequencing batch reactor seeded with activated EM. Civ Environ Res 3:130–137

    Google Scholar 

  • Ameri M, Ghobadian B, Baratian I (2008) Technical comparison of a CHP using various blends of gasohol in an IC engine. Renew Energy 33(7):1469–1474. https://doi.org/10.1016/j.renene.2007.09.015

    Article  CAS  Google Scholar 

  • Anwar ZR, Ariffin M, Hassan A, Mahmood I, Khamis AK (2013) Treatment of rubber processing wastewater by effective microorganisms using anaerobic sequencing batch reactor. J Agrobiotechnol 4:1–15

    Google Scholar 

  • Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not—the Exxon Valdez experience. MicrobBiotechnol. [Internet]. Blackwell Publishing Ltd; Mar [cited 2016 Dec 1] 2(2):213–221. https://doi.org/10.1111/j.1751-7915.2008.00079.x

    Article  CAS  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2018) Micro-remediation of metals: a new frontier in bioremediation. In: Hussain C (ed) Handbook of environmental materials management. Springer. https://doi.org/10.1007/978-3-319-58538-3_10-1. ISBN:978-3-319-58538-3

    Chapter  Google Scholar 

  • Bhagavathi Pushpa T, Vijayaraghavan J, Vijayaraghavan K, Jegan J (2016) Utilization of effective microorganisms-based water hyacinth compost as bio sorbent for the removal of basic dyes. Desalin Water Treat 57(51):24368–24377. https://doi.org/10.1080/19443994.2016.1143405

    Article  CAS  Google Scholar 

  • Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73(19):6089–6097. [Internet] American Society for Microbiology; [cited 2016 Nov 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17704271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer LJ (2001) Maturity and stability evaluation of composted yard debris. M.Sc. Thesis. Oregon State University, Corvallis, USA

    Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Daly JM, Venkateswaran A, Kostandarithes MH (2000) Engineering Deinococcusradiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  PubMed  Google Scholar 

  • Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587–594. [Internet]. Blackwell Publishing Ltd; ; [cited 2016 Dec 1]. https://doi.org/10.1111/j.1751-7915.2009.00151.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahal K (2015) Bioremediation, bioaugmentation and phytoremediation. Available from URL: https://hubpages.com/education/BIOREMEDIATION-BIOAUGMENTATION-PHYTOREMEDIATION

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int:1–13

    Google Scholar 

  • El Shafei MM, Elmoteleb EMA, El MM (2017) Investigate the effect of effective microorganism (EM) on improving the quality of sewage water from Al-Gabal Al-Asfar area in Egypt. 1st Int Conf Towar a Better Qual Life 1–9 https://doi.org/10.2139/ssrn.3164096

  • Embaby AA, El-Shahawy Abd-Allah MA, Dawoud IA (2010) Application of effective microorganisms in treatment of wastewater of beet sugar factory at Bilqas, Dakahlia Governorate, Egypt. J Environ Sci 39:151–158

    CAS  Google Scholar 

  • Ezeonu CS, Tagbo R, Anike EN, Oje OA, Onwurah INE (2012) Biotechnological tools for environmental sustainability: prospects and challenges for environments in Nigeria—a standard review. Biotechnol Res Int

    Google Scholar 

  • Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2005) Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol 53(1):129–139. [Internet]. Blackwell Publishing Ltd Available from: http://femsec.oxfordjournals.org/cgi/doi/10.1016/j.femsec.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  • Gould JM, Freer SN (1984) High-efficiency ethanol production from lignocellulosic residues pre-treated with alkaline H2O2. Biotechnol Bioeng 26:628–631

    Article  CAS  PubMed  Google Scholar 

  • Grad P (2006) Biofuelling Brazil—an overview of the bioethanol success story in Brazil. Biofuels 7(3):56–59

    Google Scholar 

  • Hassan MM, Alam MZ, Anwer MN (2013) Biodegradation of textile Azo dyes by bacteria isolated from dyeing industry effluent. Int Res J Biol Sci 2:27–31

    Google Scholar 

  • Hawken P, Lovis A, Lovins LH (1999) Natural capitalism. The 25th Anniversary Report of the Council on Environmental Quality Council on Environmental Quality, 1996. In: Beamon BM (eds) Designing the Green Supply Chain. Logistics Information Management Little Brown & Co., Boston, 12(4): p. 332e342

    Google Scholar 

  • ITOPF (2015) Oil tanker spill statistics available from: the international tanker owners pollution federation limited. ITOPF, London, United Kingdom, p 4

    Google Scholar 

  • Ivanov V (2010) Microbiology of environmental engineering systems, in environmental biotechnology. Humana Press, Totowa, NJ, pp 19–79

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants. Enzyme Res. https://doi.org/10.4061/2011/805187

  • Kehinde FO, Isaac SA (2016) Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. Afr J Microbiol Res 10:1637–1644

    Article  Google Scholar 

  • Khandaker MM, Qiamuddin K, Majrashi A, Dalorima T (2018b) Bio-ethanol production from fruit and vegetable waste by using saccharomyces cerevisiae. Bioethanol Technologies

    Google Scholar 

  • Khandaker MM, Qiamuddin KB, Majrashi A, Dalorima T, Sajili MH, Hossain SABM (2018a) Bio-ethanol production from fruit and vegetable waste by using Saccharomyces cerevisiae. Biosci Res 15(3):1703–1711

    Google Scholar 

  • Lananan F, Abdul Hamid SH, Din WNS, Ali N, Khatoon H, Jusoh A, Endut A (2014) Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing effective microorganism (EM-1) and microalgae (Chlorella sp.). Int Biodeterior Biodegrad 95:127–134. https://doi.org/10.1016/j.ibiod.2014.06.013

    Article  CAS  Google Scholar 

  • Lee J, Cho MH (2010) Removal of nitrogen in wastewater by polyvinyl alcohol (PVA)-immobilization of effective microorganisms. Korean J Chem Eng 27(1):193–197. https://doi.org/10.1007/s11814-009-0330-4

    Article  CAS  Google Scholar 

  • Maghraby DM, Hassan J (2018) Heavy metals bioaccumulation by the green alga Cladophora herpestica in Lake Mariut, Alexandria, Egypt. J Pollut 1:1

    Google Scholar 

  • Martinez AG, Sihvonen M, Palazon BM, Sanchez AR, Mikola A, Vahala R (2018) Microbial ecology of full-scale wastewater treatment systems in the polar Arctic circle: archaea, bacteria and fungi. Sci Rep 8:2208. https://doi.org/10.1038/s41598-018-20633-5

    Article  CAS  Google Scholar 

  • Mohamed AT, El Hussein AA, El Sidding MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms: biodegradation of herbicides. Biotechnology 10:274–279

    Article  CAS  Google Scholar 

  • Monica S, Karthik L, Mythili S, Sathiavelu A (2011) Formulation of effective microbial consortia and its application for sewage treatment. J Microb Biochem Technol 3:51–55

    Article  CAS  Google Scholar 

  • Moss L (2010) The 13 largest oil spills in history [internet] Mother Nature Network Available from: http://www.mnn.com/earth-matters/wilderness-resources/stories/the-13-largest-oil-spills-in-history

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24(11):509–515

    Article  CAS  PubMed  Google Scholar 

  • Namsivayam SKR, Narendrakumar G, Kumar JA (2011) Evaluation of effective microorganism (EM) for treatment of domestic sewage. J Exp Sci 2:30–32

    CAS  Google Scholar 

  • Priya M, Meenambal T, Balasubramanian N, Perumal B (2015) Comparative study of treatment of Sago wastewater using HUASB reactor in the presence and absence of effective microorganisms. Procedia Earth Planet Sci 11:483–490. https://doi.org/10.1016/j.proeps.2015.06.048

    Article  CAS  Google Scholar 

  • Rashed EM, Massoud M (2015) The effect of effective microorganisms (EM) on EBPR in modified contact stabilization system. HBRC J 11(3):384–392. https://doi.org/10.1016/j.hbrcj.2014.06.011

    Article  Google Scholar 

  • Safiyanu I, Isah AA, Abubakar US, Rita Singh M (2015) Review on comparative study on bioremediation for oil spills using microbes. Res J Pharm Biol Chem Sci 6:783–790

    CAS  Google Scholar 

  • Safwat SM (2018) Performance of moving bed biofilm reactor using effective microorganisms. J Clean Prod 185:723–731. https://doi.org/10.1016/j.jclepro.2018.03.041

    Article  CAS  Google Scholar 

  • Sarangi PK, Nayak MM (2021) Agro-waste for second-generation biofuels. Liquid Biofuels: Fundamentals, Characterization, and Applications 697–709. https://doi.org/10.1002/9781119793038.ch20

  • Satyanarayana T, Bhavdish-Narain J, Prakash A (2012) Microorganisms in environmental management: microbes and environment. Springer Publishers, Netherlands

    Book  Google Scholar 

  • Simarro R, Gonzalez N, Bautista LF, Molina MC (2013) Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. J Hazard Mater 262:158–167

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ting ASY, Rahman NHA, Isa MIHM, Tan WS (2013) Investigating metal removal potential by effective microorganisms (EM) in alginate-immobilized and free-cell forms. Bioresour Technol 147:636–639. https://doi.org/10.1016/j.biortech.2013.08.064

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2002) Latest Findings on National Air Quality (2001) Status and Trends, EPA 454-K-02-001. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Leg Res 40(3):542–545

    Google Scholar 

  • Vila J, Nieto JM, Mertens J, Springael D, Grifoll M (2015) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73:2). [Internet]. Blackwell Publishing Ltd; 2010 May 7 [cited 2016 Nov 30]. https://doi.org/10.1111/j.1574-6941.2010.00902.x

    Article  CAS  Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2(1):573–584

    Article  CAS  Google Scholar 

  • Walker GM (2011) Fuel alcohol: current production and future challenges. J Inst Brew 117(1):3–22. https://doi.org/10.1002/j.2050-0416.2011.tb00438.x

    Article  Google Scholar 

  • Wang M, Saricks C, Santini D (1999) Effect of fuel ethanol use on fuel-cycle energy and greenhouse gas emission. Argonne National Laboratory, Argonne, IL

    Google Scholar 

  • Wang Z, Stout S (2010) Oil spill environmental forensics: fingerprinting and source identification. Academic Press, San Diego, p 620

    Google Scholar 

  • Wheals AE, Bassoc LC, Alves DMG, Amorimd HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12):482–487

    Article  CAS  PubMed  Google Scholar 

  • Zhang MJ, Wang F, Su RX, Qi W, He ZM (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pre-treatment. Bioresour Technol 101:4959–4964

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Wei C, Liao C, Wu H (2008) Damage to DNA of effective microorganisms by heavy metals: impact on wastewater treatment. J Environ Sci 20(12):1514–1518. https://doi.org/10.1016/S1001-0742(08)62558-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirza, A., Kumar, A., Singh, G., Arya, S.K., Bhalla, A., Singh, J. (2024). Microbial Technology: Tools for Waste Management; Environmental Sustainability and Environmental Safety. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Microbial Applications for Environmental Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-0676-1_3

Download citation

Publish with us

Policies and ethics

Navigation