Abstract

This chapter provides an analysis of the physiological and molecular mechanisms underlying plants’ ability to tolerate heavy metals. Recent research has examined the physiological aspects of heavy metal tolerance in plants, with a particular focus on the important roles played by processes that exclude heavy metals, as well as the molecules phytochelatins and metallothioneins. These molecules are essential for detoxifying heavy metals and maintaining the metal balance within plants. Furthermore, this chapter explores the potential of these compounds as biomarkers for assessing heavy metal toxicity. In addition, the involvement of metallochaperones in heavy metal signaling and their critical function in maintaining cellular oxidant and metal balance is investigated. This chapter also explores aluminum toxicity and the different tolerance mechanisms observed in various plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1(1):19–26

    Article  Google Scholar 

  • Al Mahmud J, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226

    Article  PubMed  Google Scholar 

  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9(3):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MA, Fahad S, Haider I, Ahmed N, Ahmad S, Hussain S, Arshad M (2019) Oxidative stress and antioxidant defense in plants exposed to metal/metalloid toxicity. In: Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, Hoboken, pp 353–370

    Chapter  Google Scholar 

  • Anjitha KS, Sameena PP, Puthur JT (2021) Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology. Plant Stress 2:100038

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  PubMed  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Bankaji I, Caçador I, Sleimi N (2015) Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Environ Sci Pollut Res 22:13058–13069

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69

    Article  CAS  Google Scholar 

  • Bhat JA, Basit F, Alyemeni MN, Mansoor S, Kaya C, Ahmad P (2023) Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. Plant Physiol Biochem 198:107678

    Article  CAS  PubMed  Google Scholar 

  • Boojar MMA, Tavakkoli Z (2011) New molybdenum-hyperaccumulator among plant species growing on molybdenum mine-a biochemical study on tolerance mechanism against metal toxicity. J Plant Nutr 34(10):1532–1557

    Article  CAS  Google Scholar 

  • Bouida L, Rafatullah M, Kerrouche A, Qutob M, Alosaimi AM, Alorfi HS, Hussein MA (2022) A review on cadmium and lead contamination: sources, fate, mechanism, health effects and remediation methods. Water 14(21):3432

    Article  CAS  Google Scholar 

  • Brahim L, Mohamed M (2011) Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex halimus. Afr J Biotechnol 10(50):10143–10148

    Article  Google Scholar 

  • Cao Y-Y, Qi C-D, Li S, Wang Z, Wang X, Wang J, Ren S, Li X, Zhang N, Guo Y-D (2019) Melatonin alleviates copper toxicity via improving copper sequestration and ROS scavenging in cucumber. Plant Cell Physiol 60(3):562–574

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty R, Banerjee PC (2012) Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol 108:176–183

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S (2020) Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 12(11):1637–1655

    Article  CAS  PubMed  Google Scholar 

  • Chauhan DK, Yadav V, VaculĂ­k M, Gassmann W, Pike S, Arif N, Singh VP, Deshmukh R, Sahi S, Tripathi DK (2021) Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol 41(5):715–730

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tian Z, Cheng H, Xu G, Zhou H (2021) Adsorption process and mechanism of heavy metal ions by different components of cells, using yeast (Pichia pastoris) and Cu2+ as biosorption models. RSC Adv 11(28):17080–17091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39(24):9377–9390

    Article  CAS  PubMed  Google Scholar 

  • Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391

    Article  CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4):e23681

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182

    Article  CAS  PubMed  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  • D’Souza RJ, Varun M, Masih J, Paul MS (2010) Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in Urban North Central India. J Hazard Mater 184(1–3):457–464

    Article  PubMed  Google Scholar 

  • Dahuja A, Kumar RR, Sakhare A, Watts A, Singh B, Goswami S, Sachdev A, Praveen S (2021) Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol Plant 171(4):785–801

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5(9):1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Danouche M, El Ghachtouli N, El Arroussi H (2021) Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7(7):e07609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly (ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41(1):95–106

    Article  PubMed  Google Scholar 

  • De Caroli M, Furini A, DalCorso G, Rojas M, Di Sansebastiano G-P (2020) Endomembrane reorganization induced by heavy metals. Plan Theory 9(4):482

    Google Scholar 

  • De la Fuente-MartĂ­nez JM, Herrera-Estrella L (1999) Advances in the understanding of aluminum toxicity and the development of aluminum-tolerant transgenic plants. Adv Agron 66:103–120

    Article  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, **e Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Article  Google Scholar 

  • Galant A, Preuss ML, Cameron JC, Jez JM (2011) Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products. Front Plant Sci 2:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gao C, Gao K, Yang H, Ju T, Zhu J, Tang Z, Zhao L, Chen Q (2022) Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal. Biol Res 55(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Kaur H (2013) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199(2):118–133

    Article  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    Article  CAS  Google Scholar 

  • Ghori N-H, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16:1807–1828

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Sun S, Yan Y, **g X, Shi Q (2018) Glutathione metabolism and its function in higher plants adapting to stress. In: Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 181–205

    Chapter  Google Scholar 

  • GratĂŁo PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494

    Article  PubMed  Google Scholar 

  • Grispen VMJ, Hakvoort HWJ, Bliek T, Verkleij JAC, Schat H (2011) Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environ Exp Bot 72(1):71–76

    Article  CAS  Google Scholar 

  • Gu S, Lan CQ (2021) Biosorption of heavy metal ions by green alga Neochloris oleoabundans: effects of metal ion properties and cell wall structure. J Hazard Mater 418:126336

    Article  CAS  PubMed  Google Scholar 

  • Guarino F, Ruiz KB, Castiglione S, Cicatelli A, Biondi S (2020) The combined effect of Cr (III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.). Ecotoxicol Environ Saf 193:110345

    Article  CAS  PubMed  Google Scholar 

  • Gulzar ABM, Mazumder PB (2022) Hel** plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environ Sci Pollut Res 29(27):40319–40341

    Article  CAS  Google Scholar 

  • Guo P, Qi Y-P, Cai Y-T, Yang T-Y, Yang L-T, Huang Z-R, Chen L-S (2018) Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Physiol 38(10):1548–1565

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liu C, Liang Y, Li N, Fu Q (2019) Salicylic acid signals plant defence against cadmium toxicity. Int J Mol Sci 20(12):2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Yuan X, Li L, Zeng M, Yang J, Tang H, Duan C (2022) Genome-wide analysis of the ATP-binding cassette (ABC) transporter family in Zea mays L. and its response to heavy metal stresses. Int J Mol Sci 23(4):2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177(1–3):437–444

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013) Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Heavy metal stress in plants. Springer, Berlin, pp 73–94

    Chapter  Google Scholar 

  • Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, **a X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MK, Liu C, Wang F, Ahammed GJ, Zhou J, Xu M-X, Yu J-Q, **a X-J (2016) Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere 161:536–545

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23:249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family—redundancy or specialization? Physiol Plant 117(2):155–163

    Article  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Pineros MA, Cançado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci 103(25):9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Huda AKMN, Haque MA, Zaman R, Swaraz AM, Kabir AH (2017) Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L.). Int J Phytoremediation 19(3):246–253

    Article  CAS  PubMed  Google Scholar 

  • Jamla M, Khare T, Joshi S, Patil S, Penna S, Kumar V (2021) Omics approaches for understanding heavy metal responses and tolerance in plants. Curr Plant Biol 27:100213

    Article  CAS  Google Scholar 

  • Jan S, Parray JA, Jan S, Parray JA (2016) Heavy metal uptake in plants. In: Approaches to heavy metal tolerance in plants. Springer, Singapore, pp 1–18

    Chapter  Google Scholar 

  • Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69(9):1775–1787

    Article  CAS  PubMed  Google Scholar 

  • Jogawat A, Yadav B, Chhaya, & Narayan, O. P. (2021) Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol Plant 173(1):259–275

    CAS  PubMed  Google Scholar 

  • Joshi R, Pareek A, Singla-Pareek SL (2016) Plant metallothioneins: classification, distribution, function, and regulation. In: Plant metal interaction. Elsevier, London, pp 239–261

    Chapter  Google Scholar 

  • Kabir AH (2016) Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biol 18(4):710–719

    Article  CAS  PubMed  Google Scholar 

  • Karimi A, Khodaverdiloo H, Sepehri M, Sadaghiani MR (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Afr J Microbiol Res 5(13):1571–1576

    CAS  Google Scholar 

  • Kaur R, Das S, Bansal S, Singh G, Sardar S, Dhar H, Ram H (2021) Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms. Physiol Plant 173(1):430–448

    CAS  PubMed  Google Scholar 

  • Kaur H, Kohli SK, Khanna K, Dhiman S, Kour J, Bhardwaf T, Bhardwaf R (2022) Deciphering the role of metal binding proteins and metal transporters for remediation of toxic metals in plants. In: Bioremediation of toxic metal(loid)s. CRC Press, Boca Raton, pp 257–272

    Chapter  Google Scholar 

  • Kaya C, Ugurlar F, Ashraf M, Alyemeni MN, Moustakas M, Ahmad P (2023) 5-Aminolevulinic acid induces chromium [Cr (VI)] tolerance in tomatoes by alleviating oxidative damage and protecting photosystem II: a mechanistic approach. Plan Theory 12(3):502

    CAS  Google Scholar 

  • Khatiwada B, Hasan MT, Sun A, Kamath KS, Mirzaei M, Sunna A, Nevalainen H (2020) Proteomic response of Euglena gracilis to heavy metal exposure–identification of key proteins involved in heavy metal tolerance and accumulation. Algal Res 45:101764

    Article  Google Scholar 

  • Khullar S, Reddy MS (2018) Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Curr Biotechnol 7(3):231–241

    Article  CAS  Google Scholar 

  • Kim D, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-O, Kang H, Ahn S-J (2019) Overexpression of phytochelatin synthase AtPCS2 enhances salt tolerance in Arabidopsis thaliana. J Plant Physiol 240:153011

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Burla B, Martinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580(4):1112–1122

    Article  CAS  PubMed  Google Scholar 

  • KoĹşmiĹ„ska A, Wiszniewska A, Hanus-Fajerska E, MuszyĹ„ska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Krstic D, Djalovic I, Nikezic D, Bjelic D (2012) Aluminium in acid soils: chemistry, toxicity and impact on maize plants. In: Food production-approaches, challenges and tasks. IntechOpen, London, pp 231–242

    Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Mishra RK, Mishra V, Qidwai A, Pandey A, Shukla SK, Pandey M, Pathak A, Dikshit A (2016a) Detoxification and tolerance of heavy metals in plants. In: Plant metal interaction. Elsevier, London, pp 335–359

    Chapter  Google Scholar 

  • Kumar D, Singh DP, Barman SC, Kumar N (2016b) Heavy metal and their regulation in plant system: an overview. In: Plant responses to xenobiotics. Springer, Singapore, pp 19–38

    Chapter  Google Scholar 

  • Kumar D, Dhankher OP, Tripathi RD, Seth CS (2023) Titanium dioxide nanoparticles potentially regulate the mechanism (s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater 454:131418

    Article  CAS  PubMed  Google Scholar 

  • Lal N (2010) Molecular mechanisms and genetic basis of heavy metal toxicity and tolerance in plants. In: Plant adaptation and phytoremediation. Springer, Dordrecht, pp 35–58

    Chapter  Google Scholar 

  • Lei GJ, Sun L, Sun Y, Zhu XF, Li GX, Zheng SJ (2020) Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol 62(2):218–227

    Article  CAS  PubMed  Google Scholar 

  • Leitenmaier B, KĂĽpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Lekeux G, Crowet J-M, Nouet C, Joris M, Jadoul A, Bosman B, Carnol M, Motte P, Lins L, Galleni M (2019) Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase. J Exp Bot 70(1):329–341

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Gao Y, Yang A (2020a) Sulfur homeostasis in plants. Int J Mol Sci 21(23):8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Pu P, Li X, Gong Y, An D, Zhang L, Lv J (2020b) Sulfur application reduces cadmium uptake in edible parts of pakchoi (Brassica chinensis L.) by cadmium chelation and vacuolar sequestration. Ecotoxicol Environ Saf 194:110402

    Article  CAS  PubMed  Google Scholar 

  • Li S, Han X, Lu Z, Qiu W, Yu M, Li H, He Z, Zhuo R (2022) MAPK cascades and transcriptional factors: regulation of heavy metal tolerance in plants. Int J Mol Sci 23(8):4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-F, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen J, Lu S, Yang L, Qian J, Cao S (2016) Increased lead and cadmium tolerance of Typha angustifolia from Huaihe River is associated with enhanced phytochelatin synthesis and improved antioxidative capacity. Environ Technol 37(21):2743–2749

    Article  CAS  PubMed  Google Scholar 

  • Luyckx M, Hausman J-F, Guerriero G, Lutts S (2023) Silicon reduces zinc absorption and triggers oxidative tolerance processes without impacting growth in young plants of hemp (Cannabis sativa L.). Environ Sci Pollut Res 30(1):943–955

    Article  CAS  Google Scholar 

  • Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278

    Article  CAS  PubMed  Google Scholar 

  • Malik MA, Wani AH, Mir SH, Rehman IU, Tahir I, Ahmad P, Rashid I (2021) Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol Biochem 165:187–195

    Article  CAS  PubMed  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Plants and heavy metals. Springer, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Mediouni C, Benzarti O, Tray B, Ghorbel MH, Jemal F (2006) Cadmium and copper toxicity for tomato seedlings. Agron Sustain Dev 26(4):227–232

    Article  CAS  Google Scholar 

  • Meena V, Dotaniya ML, Saha JK, Das H, Patra AK (2020) Impact of lead contamination on agroecosystem and human health. In: Lead in plants and the environment. Springer, Cham, pp 67–82

    Chapter  Google Scholar 

  • Mehla N, Sindhi V, Josula D, Bisht P, Wani SH (2017) An introduction to antioxidants and their roles in plant stress tolerance. In: Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 1–23

    Google Scholar 

  • Memon AR, Aktoprakligil D, Ă–zdemir A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25(3):111–121

    Google Scholar 

  • Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM (2022) Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress. Front Plant Sci 13:819658

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra A, Chatterjee S, Datta S, Sharma S, Veer V, Razafindrabe BHM, Walther C, Gupta DK (2014) Mechanism of metal transporters in plants. In: Heavy metal remediation: transport and accumulation in plants. Nova Publishers, Hauppauge, pp 1–28

    Google Scholar 

  • Mukta RH, Khatun MR, Nazmul Huda AKM (2019) Calcium induces phytochelatin accumulation to cope with chromium toxicity in rice (Oryza sativa L.). J Plant Interact 14(1):295–302

    Article  CAS  Google Scholar 

  • Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim Biophys Acta 1864(8):932–944

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TQ, Sesin V, Kisiala A, Emery RJN (2021) Phytohormonal roles in plant responses to heavy metal stress: implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ Toxicol Chem 40(1):7–22

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49(321):623–647

    CAS  Google Scholar 

  • Noor I, Sohail H, Sun J, Nawaz MA, Li G, Hasanuzzaman M, Liu J (2022) Heavy metal and metalloid toxicity in horticultural plants: tolerance mechanism and remediation strategies. Chemosphere 303:135196

    Article  CAS  PubMed  Google Scholar 

  • Nualla-Ong A, Phongdara A, Buapet P (2020) Copper and zinc differentially affect root glutathione accumulation and phytochelatin synthase gene expression of Rhizophora mucronata seedlings: implications for mechanisms underlying trace metal tolerance. Ecotoxicol Environ Saf 205:111175

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Zhang R, Cao H, Luo Z (2014) Plant pleiotropic drug resistance transporters: transport mechanism, gene expression, and function. J Integr Plant Biol 56(8):729–740

    Article  CAS  PubMed  Google Scholar 

  • OveÄŤka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32(1):73–86

    Article  PubMed  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    Article  CAS  PubMed  Google Scholar 

  • Pandhair V, Sekhon BS (2006) Reactive oxygen species and antioxidants in plants: an overview. J Plant Biochem Biotechnol 15:71–78

    Article  CAS  Google Scholar 

  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman J-F (2015) Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasricha S, Mathur V, Garg A, Lenka S, Verma K, Agarwal S (2021) Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: heavy metal tolerance in hyperaccumulators. Environ Chall 4:100197

    Article  CAS  Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21(5):439–456

    Article  CAS  Google Scholar 

  • Podar D, Maathuis FJM (2022) The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant Cell Environ 45(3):719–736

    Article  CAS  PubMed  Google Scholar 

  • Polle A, SchĂĽtzendĂĽbel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses. In: Plant responses to abiotic stress. Springer, Berlin, pp 187–215

    Chapter  Google Scholar 

  • PrĂ©vĂ©ral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynaud F, Lobinski R, Verbavatz J-M, Vavasseur A (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284(8):4936–4943

    Article  PubMed  Google Scholar 

  • Ranjan A, Sinha R, Bala M, Pareek A, Singla-Pareek SL, Singh AK (2021) Silicon-mediated abiotic and biotic stress mitigation in plants: underlying mechanisms and potential for stress resilient agriculture. Plant Physiol Biochem 163:15–25

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri SS, Pramanick P, Talukder P, Basak A (2021) Polyamines, metallothioneins, and phytochelatins—natural defense of plants to mitigate heavy metals. Stud Nat Prod Chem 69:227–261

    Article  CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot J-P (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  CAS  PubMed  Google Scholar 

  • RuciĹ„iska-Sobkowiak R (2010) Oxidative stress in plants exposed to heavy metals. Postepy Biochem 56(2):191–200

    PubMed  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42(11):899–906

    Article  CAS  PubMed  Google Scholar 

  • Saad RB, Hsouna AB, Saibi W, Hamed KB, Brini F, Ghneim-Herrera T (2018) A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. J Plant Physiol 231:234–243

    Article  CAS  PubMed  Google Scholar 

  • Sachan P, Lal N (2017) An overview of nickel (Ni2+) essentiality, toxicity and tolerance strategies in plants. Asian J Biol 2(4):1–15

    Article  Google Scholar 

  • Sarma RS, Prakash P (2020) Adverse effect of heavy metal toxicity in plants’ metabolic systems and biotechnological approaches for its tolerance mechanism. In: Rakshit A, Singh H, Singh A, Singh U, Fraceto L (eds) New frontiers in stress management for durable agriculture. Springer, Singapore, pp 145–168

    Chapter  Google Scholar 

  • Sarwar N, Saifullah, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P (2016) Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: an overview. In: Plant metal interaction. Elsevier, London, pp 263–283

    Chapter  Google Scholar 

  • Shoji T (2014) ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. Int Rev Cell Mol Biol 309:303–346

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kalamdhad AS (2011) Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ 1(2):15–21

    Google Scholar 

  • Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P (2023) Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 319:137917

    Article  CAS  PubMed  Google Scholar 

  • Sipos G, Kuchler K (2006) Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Curr Drug Targets 7(4):471–481

    Article  CAS  PubMed  Google Scholar 

  • Skuza L, Szućko-Kociuba I, Filip E, BoĹĽek I (2022) Natural molecular mechanisms of plant hyperaccumulation and hypertolerance towards heavy metals. Int J Mol Sci 23(16):9335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W-Y, Park J, Mendoza-CĂłzatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107(49):21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, ** L, Wang X (2017) Cadmium absorption and transportation pathways in plants. Int J Phytoremediation 19(2):133–141

    Article  CAS  PubMed  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Biol 41(1):553–575

    Article  CAS  Google Scholar 

  • Sun C, Gao L, Xu L, Zheng Q, Sun S, Liu X, Zhang Z, Tian Z, Dai T, Sun J (2023) Melatonin alleviates chromium toxicity by altering chromium subcellular distribution and enhancing antioxidant metabolism in wheat seedlings. Environ Sci Pollut Res 30(17):50743–50758

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, StrzaĹ‚ka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142(1):148–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tehseen M, Cairns N, Sherson S, Cobbett CS (2010) Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2(8):556–564

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:1–11

    Article  Google Scholar 

  • Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A (2022) Metal tolerance in plants: molecular and physicochemical interface determines the “not so heavy effect” of heavy metals. Chemosphere 287:131957

    Article  CAS  PubMed  Google Scholar 

  • Tipu MI, Ashraf MY, Sarwar N, Akhtar M, Shaheen MR, Ali S, Damalas CA (2021) Growth and physiology of maize (Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. J Plant Growth Regul 40:774–786

    Article  CAS  Google Scholar 

  • Tripathi S, Poluri KM (2021) Metallothionein-and phytochelatin-assisted mechanism of heavy metal detoxification in microalgae. In: Hasanuzzaman M (ed) Approaches to the remediation of inorganic pollutants. Springer, Singapore, pp 323–344

    Chapter  Google Scholar 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293(1):653–659

    Article  CAS  PubMed  Google Scholar 

  • Váradi A, Sarkadi B (2003) Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 17(1–4):103–114

    PubMed  Google Scholar 

  • Wahid A, Arshad M, Farooq M (2010) Cadmium phytotoxicity: responses, mechanisms and mitigation strategies: a review. In: Organic farming, pest control and remediation of soil pollutants: organic farming, pest control and remediation of soil pollutants. Springer, Dordrecht, pp 371–403

    Google Scholar 

  • Wang H, Liu Y, Peng Z, Li J, Huang W, Liu Y, Wang X, **e S, Sun L, Han E (2019) Ectopic expression of poplar ABC transporter PtoABCG36 confers Cd tolerance in Arabidopsis thaliana. Int J Mol Sci 20(13):3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37(2):269–281

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yang Z, How J, Xu H, Chen L, Li K (2017) Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol 95:157–168

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Yang F, Liu J-L, Wu H-T, Yang H, Shi Y, Liu J, Zhang Y-F, Luo Y-R, Chen K-M (2022) Heavy metal transporters: functional mechanisms, regulation, and application in phytoremediation. Sci Total Environ 809:151099

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ren J, Lin X, Yang Z, Deng X, Ke Q (2023) Melatonin alleviates chromium toxicity in maize by modulation of cell wall polysaccharides biosynthesis, glutathione metabolism, and antioxidant capacity. Int J Mol Sci 24(4):3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh C-M, Chien P-S, Huang H-J (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58(3):659–671

    Article  CAS  PubMed  Google Scholar 

  • Zabochnicka-ĹšwiÄ…tek M, Krzywonos M (2014) Potentials of biosorption and bioaccumulation processes for heavy metal removal. Pol J Environ Stud 23(2):551–561

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar U, Ayub A, Hussain S, Waraich EA, El-Esawi MA, Ishfaq M, Ahmad M, Ali N, Maqsood MF (2022) Cadmium toxicity in plants: recent progress on morpho-physiological effects and remediation strategies. J Soil Sci Plant Nutr 22:212–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaffai, R., Ganesan, M., Cherif, A. (2024). Mechanisms of Heavy Metal Homeostasis and Resistance in Plants. In: Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms. Springer, Singapore. https://doi.org/10.1007/978-981-97-0672-3_6

Download citation

Publish with us

Policies and ethics

Navigation