Abstract

Recent scientific advancements have significantly improved our understanding of plant signaling pathways under abiotic stress. However, further investigation is necessary to better comprehend the underlying mechanisms. Current research focuses on elucidating the role of key signaling components in plant stress responses. Crucial molecules, such as reactive oxygen species (ROS), nitric oxide (NO), calcium, and potassium, regulate stomatal closure and play pivotal roles in plant signaling pathways. This chapter explains the critical role of these factors in cold adaptation, drought resistance, and the regulation of stress-related genes. Furthermore, emerging evidence suggests complex interactions between various signaling pathways and the involvement of signaling molecules in regulating plant growth and development. This overview highlights recent advancements in understanding the initial stages of stress signaling and the functions of key signaling molecules in regulating plant responses to abiotic stress. It emphasizes the importance of investigating the early aspects of stress signaling and identifying primary stress sensors. An understanding of stress signaling mechanisms and the role of signaling molecules in plant responses is crucial for develo** precise interventions that enhance stress resilience in crops, ensure food security, and address the challenges posed by changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S (2004) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55:541–552

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Tripathi R, Jain M (2022) Ethylene and metabolic reprogramming under abiotic stresses. In: Ethylene in plant biology. Wiley, pp 345–362

    Chapter  Google Scholar 

  • Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS (2018) Mechanism of stomatal closure in plants exposed to drought and cold stress. In: Survival strategies in extreme cold and desiccation: adaptation mechanisms and their applications. Springer, pp 215–232

    Chapter  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679

    Article  CAS  Google Scholar 

  • Ali MS, Baek K-H (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21(2):621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM (2017) Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ 40(7):1197–1213

    Article  CAS  PubMed  Google Scholar 

  • Altaf MA, Shahid R, Kumar R, Altaf MM, Kumar A, Khan LU, Saqib M, Nawaz MA, Saddiq B, Bahadur S (2022) Phytohormones mediated modulation of abiotic stress tolerance and potential crosstalk in horticultural crops. J Plant Growth Regul 42:1–27

    Google Scholar 

  • Ara H, Sinha AK (2014) Conscientiousness of mitogen activated protein kinases in acquiring tolerance for abiotic stresses in plants

    Book  Google Scholar 

  • Aroca A, Zhang J, **e Y, Romero LC, Gotor C (2021) Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. J Exp Bot 72(16):5893–5904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75:179–191

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69(1):26–36. https://doi.org/10.1111/j.1365-313X.2011.04766.x

    Article  CAS  PubMed  Google Scholar 

  • Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69(14):3401–3411

    Article  CAS  PubMed  Google Scholar 

  • Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G (2019) Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. Int J Mol Sci 20(21):5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Chen J, Kong X, Todd CD, Yang Y, Hu X, Li D (2012) Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 53(4):710–720

    Article  CAS  PubMed  Google Scholar 

  • Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915–924

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj S, Kapoor D, Singh S, Gautam V, Dhanjal DS, Jan S, Ramamurthy PC, Prasad R, Singh J (2021) Nitric oxide: a ubiquitous signal molecule for enhancing plant tolerance to salinity stress and their molecular mechanisms. J Plant Growth Regul 40(6):2329–2341

    Article  CAS  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132(1):21–32

    Article  CAS  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One 13(2):e0193517

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruntz RC, Lindsley CW, Brown HA (2014) Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 66(4):1033–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X-Q, Jiang Z-H, Yi Y-Y, Yang Y, Ke L-P, Pei Z-M, Zhu S (2017) Biotic and abiotic stresses activate different Ca2+ permeable channels in Arabidopsis. Front Plant Sci 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21(8):2527–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Lai Z, Shi J, **ao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10(1):1–15

    Article  CAS  Google Scholar 

  • Chen J-H, Jiang H-W, Hsieh E-J, Chen H-Y, Chien C-T, Hsieh H-L, Lin T-P (2012a) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158(1):340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012b) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819(2):120–128

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Bullock DA Jr, Alonso JM, Stepanova AN (2021) To fight or to grow: the balancing role of ethylene in plant abiotic stress responses. Plants 11(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Lanteri ML, García-Mata C, ten Have A, Laxalt AM, Graziano M, Lamattina L (2007) Nitric oxide functions as intermediate in auxin, abscisic acid, and lipid signaling pathways. In: Nitric oxide in plant growth, development and stress physiology. Springer, pp 113–130

    Google Scholar 

  • Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206(7):1107–1115

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48(6):857–872

    Article  PubMed  Google Scholar 

  • Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T (2009) Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiol 50(5):986–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 11(1):2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C (2019) Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol Biotechnol 61(2):153–172

    Article  CAS  PubMed  Google Scholar 

  • Deng Y-Q, Bao J, Yuan F, Liang X, Feng Z-T, Wang B-S (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399

    Article  CAS  Google Scholar 

  • Deng J, Yang X, Sun W, Miao Y, He L, Zhang X (2020) The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. Plant Physiol 183(1):236–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021) Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J 105(2):459–476

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Krishna P (2008) Identification of differentially expressed genes in brassinosteroid-treated Brassica napus seedlings. J Plant Growth Regul 27:297–308

    Article  CAS  Google Scholar 

  • Dikilitas M, Simsek E, Roychoudhury A (2020) Modulation of abiotic stress tolerance through hydrogen peroxide. In: Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley, pp 147–173

    Chapter  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26(3–4):131–136

    Article  CAS  Google Scholar 

  • Dou L, He K, Higaki T, Wang X, Mao T (2018) Ethylene signaling modulates cortical microtubule reassembly in response to salt stress. Plant Physiol 176(3):2071–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Liu H, **ong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubrovina AS, Kiselev KV (2019) The role of calcium-dependent protein kinase genes VaCPK1 and VaCPK26 in the response of Vitis amurensis (in vitro) and Arabidopsis thaliana (in vivo) to abiotic stresses. Russ J Genet 55:319–329

    Article  CAS  Google Scholar 

  • Eyidogan F, Oz MT, Yucel M, Oktem HA (2012) Signal transduction of phytohormones under abiotic stresses. In: Phytohormones and abiotic stress tolerance in plants. Springer, pp 1–48

    Google Scholar 

  • Fancy NN, Bahlmann A, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40(4):462–472

    Article  CAS  PubMed  Google Scholar 

  • Floris M, Mahgoub H, Lanet E, Robaglia C, Menand B (2009) Post-transcriptional regulation of gene expression in plants during abiotic stress. Int J Mol Sci 10(7):3168–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011) Abiotic and biotic stress response crosstalk in plants. In: Abiotic stress response in plants—physiological, biochemical and genetic perspectives. InTech, pp 3–26

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    Article  PubMed  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3(4):653–669

    Article  CAS  PubMed  Google Scholar 

  • Garcı́a-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126(3):1196–1204

    Article  PubMed  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Tuteja N (2016) Abiotic stress signaling in plants—an overview. In: Abiotic stress response in plants. Wiley, pp 1–12

    Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Gordeeva AV, Zvyagilskaya RA, Labas YA (2003) Cross-talk between reactive oxygen species and calcium in living cells. Biochem Mosc 68:1077–1080

    Article  CAS  Google Scholar 

  • Goyal V, Jhanghel D, Mehrotra S (2021) Emerging warriors against salinity in plants: nitric oxide and hydrogen sulphide. Physiol Plant 171(4):896–908

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Tian Z, Yan D, Zhang J, Qin P (2005) Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J 6:67

    CAS  Google Scholar 

  • Harrison MA (2012) Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Phytohormones and abiotic stress tolerance in plants. Springer, pp 49–76

    Chapter  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MHMB, Al Mahmud J, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Rep 12:77–92

    Article  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93(12):2054–2059

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45(5):550–559

    Article  CAS  PubMed  Google Scholar 

  • He G-H, Xu J-Y, Wang Y-X, Liu J-M, Li P-S, Chen M, Ma Y-Z, Xu Z-S (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:1–16

    Article  Google Scholar 

  • Hilal B, Khan TA, Fariduddin Q (2023) Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. Plant Physiol Biochem 196:1065

    Article  CAS  PubMed  Google Scholar 

  • Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2(1):11–15

    Article  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin S-M, Qian P, **n W, Li H-Y, Burritt DJ, Fujita M, Tran L-SP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39(5):1029–1048

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Ao C, Wang X, Wu Y, Du X (2021) GhWRKY1-like, a WRKY transcription factor, mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis. BMC Plant Biol 21(1):1–13

    Article  Google Scholar 

  • Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M, Lin H-X (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias MJ, Terrile MC, Casalongué CA (2011) Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress. Plant Signal Behav 6(3):452–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ijaz B, Formentin E, Ronci B, Locato V, Barizza E, Hyder MZ, Lo Schiavo F, Yasmin T (2019) Salt tolerance in indica rice cell cultures depends on a fine tuning of ROS signalling and homeostasis. PLoS One 14(4):e0213986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Fatma M, Gautam H, Umar S, Sofo A, D’ippolito I, Khan NA (2021a) The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress. Plants 10(9):1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Corpas FJ (2021b) Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) plants. Antioxidants 10(1):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan B, Rasheed F, Sehar Z, Fatma M, Iqbal N, Masood A, Anjum NA, Khan NA (2021) Coordinated role of nitric oxide, ethylene, nitrogen, and sulfur in plant salt stress tolerance. Stress 1(3):181–199

    Article  Google Scholar 

  • Jain S, Kumar D, Jain M, Chaudhary P, Deswal R, Sarin NB (2012) Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell Tissue Organ Culture (PCTOC) 109:19–31

    Article  CAS  Google Scholar 

  • Jain M, Nagar P, Goel P, Singh AK, Kumari S, Mustafiz A (2018) Second messengers: central regulators in plant abiotic stress response. In: Abiotic stress-mediated sensing and signaling in plants: an omics perspective. Springer, pp 47–94

    Chapter  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Métraux J-P, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139(1):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalali BL, Bhargava S, Kamble A (2006) Signal transduction and transcriptional regulation of plant defence responses. J Phytopathol 154(2):65–74

    Article  CAS  Google Scholar 

  • Jang J-C (2016) Arginine-rich motif-tandem CCCH zinc finger proteins in plant stress responses and post-transcriptional regulation of gene expression. Plant Sci 252:118–124

    Article  CAS  PubMed  Google Scholar 

  • Jiang H-W, Liu M-J, Chen I-C, Huang C-H, Chao L-Y, Hsieh H-L (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154(4):1646–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jogawat A (2019) Osmolytes and their role in abiotic stress tolerance in plants. In: Molecular plant abiotic stress: biology and biotechnology. Wiley, pp 91–104

    Chapter  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol Plant 122(2):159–168

    Article  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36:2287–2297

    Article  CAS  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci:1771–1780

    Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    Article  CAS  Google Scholar 

  • Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K (2022) Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci

    Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. ScientificWorldJournal 2014:167681

    Article  PubMed  PubMed Central  Google Scholar 

  • Klay I, Gouia S, Liu M, Mila I, Khoudi H, Bernadac A, Bouzayen M, Pirrello J (2018) Ethylene response factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Sci 274:137–145

    Article  CAS  PubMed  Google Scholar 

  • Klimecka M, Muszyńska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54(2):219–233

    Article  CAS  PubMed  Google Scholar 

  • Knight H (1999) Calcium signaling during abiotic stress in plants. In: International review of cytology, vol 195. Elsevier, pp 269–324

    Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262–267

    Article  CAS  PubMed  Google Scholar 

  • Kolbert Z (2016) Implication of nitric oxide (NO) in excess element-induced morphogenic responses of the root system. Plant Physiol Biochem 101:149–161

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Prasad BD, Rahman T (2017) Brassinosteroid action in plant abiotic stress tolerance. In: Brassinosteroids: methods and protocols. Humana Press, pp 193–202

    Chapter  Google Scholar 

  • Kumar K, Raina SK, Sultan SM (2020) Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J Plant Biochem Biotechnol 29(4):700–714

    Article  CAS  Google Scholar 

  • Lau S-E, Hamdan MF, Pua T-L, Saidi NB, Tan BC (2021) Plant nitric oxide signaling under drought stress. Plants 10(2):360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZG (2013) Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ J Plant Physiol 60:733–740

    Article  CAS  Google Scholar 

  • Li Z-G, Min X, Zhou Z-H (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Huang Y, Liu C, Chen K, Li M (2023) Functions and interaction of plant lipid signalling under abiotic stresses. Plant Biol 25(3):361–378

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Zheng J, **e Y, **g W, Zhang Q, Zhang W (2022) Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. J Genet Genomics

    Google Scholar 

  • Liu W, Li Y, Yuan H, Zhang B, Zhai S, Lu Y (2017) WD40-REPEAT 5a functions in drought stress tolerance by regulating nitric oxide accumulation in Arabidopsis. Plant Cell Environ 40(4):543–552

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B–like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl_1):S389–S400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Calderón-Urrea A, Yu J, Liao W, **e J, Lv J, Feng Z, Tang Z (2020) The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant Soil 449:1–10

    Article  CAS  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud J, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56(4):575–589

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance–different tiers of regulation. J Plant Physiol 171(7):486–496

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Zhang Q, Yang J, **e G, Liu J-H (2020) PtrCDPK10 of Poncirus trifoliata functions in dehydration and drought tolerance by reducing ROS accumulation via phosphorylating PtrAPX. Plant Sci 291:110320

    Article  CAS  PubMed  Google Scholar 

  • Meringer MV, Villasuso AL, Margutti MP, Usorach J, Pasquaré SJ, Giusto NM, Machado EE, Racagni GE (2016) Saline and osmotic stresses stimulate PLD/diacylglycerol kinase activities and increase the level of phosphatidic acid and proline in barley roots. Environ Exp Bot 128:69–78

    Article  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25(3):295–303

    Article  CAS  PubMed  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Min Y, Qin B, ** W, Li M, Chen L, Chen L, Sun A, Wang Z, Yin Y (2016) Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.). J Integr Agric 15(12):2745–2758

    Article  Google Scholar 

  • Mohanta TK, Bashir T, Hashem A, Abd-Allah EF, Khan AL, Al-Harrasi AS (2018) Early events in plant abiotic stress signaling: interplay between calcium, reactive oxygen species and phytohormones. J Plant Growth Regul 37:1033–1049

    Article  CAS  Google Scholar 

  • Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130(1):22–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Corpas FJ (2020) Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: a gaseous interactome. Plant Physiol Biochem 155:800–814

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling: “in a nutshell”. J Lipid Res 50:S260–S265

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10(7):339–346

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath M, Bhatt D, Jain A, Saxena SC, Saifi SK, Yadav S, Negi M, Prasad R, Tuteja N (2019) Salt stress triggers augmented levels of Na+, Ca2+ and ROS and alter stress-responsive gene expression in roots of CBL9 and CIPK23 knockout mutants of Arabidopsis thaliana. Environ Exp Bot 161:265–276

    Article  CAS  Google Scholar 

  • Novaković L, Guo T, Bacic A, Sampathkumar A, Johnson KL (2018) Hitting the wall—sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants 7(4):89

    Article  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17(4):1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem 285(12):9190–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK, Gautam A (2020) Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol Plant 168(2):511–525

    Article  CAS  PubMed  Google Scholar 

  • Pandey V, Bhatt ID, Nandi SK (2019) Role and regulation of auxin signaling in abiotic stress tolerance. In: Plant signaling molecules. Elsevier, pp 319–331

    Chapter  Google Scholar 

  • Pandey A, Khan MK, Hamurcu M, Athar T, Yerlikaya BA, Yerlikaya S, Kavas M, Rustagi A, Zargar SM, Sofi PA (2023) Role of exogenous nitric oxide in protecting plants against abiotic stresses. Agronomy 13(5):1201

    Article  CAS  Google Scholar 

  • Paul S, Roychoudhury A (2020) Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment. Physiol Plant 168(2):374–393

    Article  CAS  PubMed  Google Scholar 

  • Pei Y, ** Z, Liu Z, Fang H, Zhang L, Hao X, Liu D, Du X, Zhang Y, Tian B (2018) Gasotransmitters in plants. In: Gasotransmitters, vol 12(235). Royal Society of Chemistry

    Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141(2):351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokotylo IV, Kretynin SV, Khripach VA, Ruelland E, Blume YB, Kravets VS (2014) Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus. Plant Growth Regul 73:9–17

    Article  CAS  Google Scholar 

  • Popko J, Hänsch R, Mendel R, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12(2):242–258

    Article  CAS  PubMed  Google Scholar 

  • Quan L, Zhang B, Shi W, Li H (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Quilis J, Peñas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant Microbe Interact 21(9):1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Raina M, Kisku AV, Joon S, Kumar S, Kumar D (2021) Calmodulin and calmodulin-like Ca2+ binding proteins as molecular players of abiotic stress response in plants. In: Calcium transport elements in plants. Elsevier, pp 231–248

    Chapter  Google Scholar 

  • Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H (2022) Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol 24(4):540–558

    Article  CAS  PubMed  Google Scholar 

  • Rhaman MS, Imran S, Karim MM, Chakrobortty J, Mahamud MA, Sarker P, Tahjib-Ul-Arif M, Robin AHK, Ye W, Murata Y (2021) 5-Aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Rep 40:1451–1469

    Article  CAS  PubMed  Google Scholar 

  • Ribba T, Garrido-Vargas F, O’Brien JA (2020) Auxin-mediated responses under salt stress: from developmental regulation to biotechnological applications. J Exp Bot 71(13):3843–3853

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Develo** climate-resilient crops: improving plant tolerance to stress combination. Plant J 109(2):373–389

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Aplicada 22(1):1–10

    Google Scholar 

  • Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Nitric oxide signalling functions in plant–pathogen interactions. Cell Microbiol 6(9):795–803

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Banerjee A (2017) Abscisic acid signaling and involvement of mitogen activated protein kinases and calcium-dependent protein kinases during plant abiotic stress. In: Mechanism of plant hormone signaling under stress, vol 1. Wiley, pp 197–241

    Chapter  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Sagar S, Singh A (2021) Emerging role of phospholipase C mediated lipid signaling in abiotic stress tolerance and development in plants. Plant Cell Rep 40(11):2123–2133

    Article  CAS  PubMed  Google Scholar 

  • Sagar S, Biswas DK, Singh A (2020) Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum). Gene 753:144797

    Article  CAS  PubMed  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52

    Article  CAS  PubMed  Google Scholar 

  • Saminathan T, Alvarado A, Lopez C, Shinde S, Gajanayake B, Abburi VL, Vajja VG, Jagadeeswaran G, Raja Reddy K, Nimmakayala P (2019) Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Funct Integr Genomics 19:171–190

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten H-M, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JHM (2013) SALT-RESPONSIVE ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25(6):2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmöckel SM, Garcia AF, Berger B, Tester M, Webb AAR, Roy SJ (2015) Different NaCl-induced calcium signatures in the Arabidopsis thaliana ecotypes Col-0 and C24. PLoS One 10(2):e0117564

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehar Z, Gautam H, Iqbal N, Alvi AF, Jahan B, Fatma M, Albaqami M, Khan NA (2022) The functional interplay between ethylene, hydrogen sulfide, and sulfur in plant heat stress tolerance. Biomolecules 12(5):678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Meyyazhagan A, Easwaran M, Sharma MMM, Mehta S, Pandey V, Liu W-C, Kamyab H, Balasubramanian B, Baskaran R (2022) Hydrogen sulfide: a new warrior in assisting seed germination during adverse environmental conditions. Plant Growth Regul 98(3):401–420

    Article  CAS  Google Scholar 

  • Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H (2018) The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. Int J Mol Sci 19(7):1900

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IAA (2021) Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep 40(8):1543–1564

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Pandey A, Baranwal V, Kapoor S, Pandey GK (2012) Comprehensive expression analysis of rice phospholipase D gene family during abiotic stresses and development. Plant Signal Behav 7(7):847–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kanwar P, Yadav AK, Mishra M, Jha SK, Baranwal V, Pandey A, Kapoor S, Tyagi AK, Pandey GK (2014) Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. FEBS J 281(3):894–915

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Pandey A, Srivastava AK, Tran L-SP, Pandey GK (2016) Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit Rev Biotechnol 36(6):1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar A, Yadav S, Singh IK (2019) Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene 18:100173

    Article  CAS  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6(2):196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32(1):2–11

    Article  PubMed  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16(6):13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, **g S, Yu D (2009) Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chin Sci Bull 54(24):4671–4678

    Article  CAS  Google Scholar 

  • Su L, Xu M, Zhang J, Wang Y, Lei Y, Li Q (2021) Genome-wide identification of auxin response factor (ARF) family in kiwifruit (Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses. Physiol Mol Biol Plants 27(6):1261–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5(11):1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52(9):1686–1696

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Hasegawa H, Gyohda A, Komatsu S, Okamoto T, Okada K, Terakawa T, Koshiba T (2016) Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell Tissue Organ Culture (PCTOC) 127:35–46

    Article  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15(1):141–152

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62(7):2349–2361

    Article  CAS  PubMed  Google Scholar 

  • Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran L-SP (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169(1):73–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2(3):135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2(2):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3(8):525–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163(3):515–523

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Waadt R, Seller CA, Hsu P-K, Takahashi Y, Munemasa S, Schroeder JI (2022) Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol 23(10):680–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahid I, Rani P, Kumari S, Ahmad R, Hussain SJ, Alamri S, Tripathy N, Khan MIR (2022) Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere 287:132142

    Article  CAS  PubMed  Google Scholar 

  • Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Wan B, Lin Y, Mou T (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581(6):1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Wang C-T, Song W (2013) Calcium-dependent protein kinase gene ZmCPK12 from maize confers tolerance to drought and salt stresses in transgenic plants. Acta Physiol Plant 35:1659–1666

    Article  CAS  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hou C, Zheng K, Li Q, Chen S, Wang S (2017) Overexpression of ERF96, a small ethylene response factor gene, enhances salt tolerance in Arabidopsis. Biol Plant 61:693–701

    Article  CAS  Google Scholar 

  • Wang C-T, Ru J-N, Liu Y-W, Li M, Zhao D, Yang J-F, Fu J-D, Xu Z-S (2018a) Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. Int J Mol Sci 19(10):3046

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C-T, Ru J-N, Liu Y-W, Yang J-F, Li M, Xu Z-S, Fu J-D (2018b) The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci 19(9):2580

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut 259:113943

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Kim SG, Kang KY, Kim J-G, Park S-R, Gupta R, Kim YH, Wang Y, Kim ST (2016) Overexpression of a pathogenesis-related protein 10 enhances biotic and abiotic stress tolerance in rice. Plant Pathol J 32(6):552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15(3):745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ong L, Zhu J (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112(2):152–166

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Cui Y, Li M, Wang M, Yu Y, Zhang B, Huang L, **a X (2013) OsMSR2, a novel rice calmodulin-like gene, confers enhanced salt tolerance in rice (Oryza sativa L.). Aust J Crop Sci 7(3):368–373

    CAS  Google Scholar 

  • Xu Q, Feng WJ, Peng HR, Ni ZF, Sun QX (2014) TaWRKY71, a WRKY transcription factor from wheat, enhances tolerance to abiotic stress in transgenic Arabidopsis thaliana. Cereal Res Commun 42(1):47–57

    Article  CAS  Google Scholar 

  • Xu T, Niu J, Jiang Z (2022) Sensing mechanisms: calcium signaling mediated abiotic stress in plants. Front Plant Sci 13:925863

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Spangenberg G, Yamaguchi-Shinozaki K, Shinozaki K (2009) DREB regulons in abiotic-stress-responsive gene expression in plants. In: Molecular breeding of forage and turf. Springer, pp 15–28

    Chapter  Google Scholar 

  • Yang T, Zhang L, Zhang T, Zhang H, Xu S, An L (2005) Transcriptional regulation network of cold-responsive genes in higher plants. Plant Sci 169(6):987–995

    Article  CAS  Google Scholar 

  • Yang J, Liu S, Ji L, Tang X, Zhu Y, **e G (2020) Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice. J Plant Physiol 249:153165

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Han X, Ma L, Wu Y, Liu X, Fu H, Liu G, Lei X, Guo Y (2021) Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. Mol Plant 14(12):2000–2014

    Article  CAS  PubMed  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu HQ, Yong TM, Li HJ, Liu YP, Zhou SF, Fu FL, Li WC (2015) Overexpression of a phospholipase Dα gene from Ammopiptanthus nanus enhances salt tolerance of phospholipase Dα1-deficient Arabidopsis mutant. Planta 242:1495–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhan H, Nie X, Zhang T, Li S, Wang X, Du X, Tong W, Song W (2019) Melatonin: A small molecule but important for salt stress tolerance in plants. Int J Mol Sci 20(3):709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Li Z, Wang Y, Wang J, **ao M, Liu H, Quan R, Zhang H, Huang R, Zhu L (2022) Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. Plant Biotechnol J 20(3):468–484

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, **ao F, Zheng Y, Liu G, Zhuang Y, Wang Z, Zhang Y, He J, Fu C, Lin H (2022) Pamp-induced secreted peptide 3 modulates salt tolerance through receptor-like kinase 7 in plants. Plant Cell 34(2):927–944

    Article  PubMed  Google Scholar 

  • Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q (2020) A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules 10(4):506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaffai, R., Ganesan, M., Cherif, A. (2024). Signaling Pathways in Plant Responses to Abiotic Stress. In: Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms. Springer, Singapore. https://doi.org/10.1007/978-981-97-0672-3_10

Download citation

Publish with us

Policies and ethics

Navigation