The Application of 4-Hexylresorcinol for Wound Healing

  • Chapter
  • First Online:
Biomedical Application of 4-Hexylresorcinol
  • 38 Accesses

Abstract

This chapter discusses the potential applications of 4-hexylresorcinol (4HR) in wound healing, angiogenesis, and osteoinduction. 4HR has been shown to improve epithelialization, increase angiogenesis, and stimulate osteogenesis. Its ability to modulate the expression of transcription factors, such as Sp1, E2F, and TGF-β1, contributes to these healing processes. Additionally, 4HR has been found to have anti-inflammatory properties, further supporting its potential as a therapeutic agent. In diabetic animal models, 4HR has demonstrated positive effects on wound healing and vascular network organization. Furthermore, 4HR has shown potential in osteoinduction and dental hard tissue formation, indicating its potential use in bone grafting and dental damage repair. Overall, 4HR holds promise as a candidate for improving wound healing, angiogenesis, and bone and dental regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 145.59
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen IK, McCoy BJ, Diegelmann RF (1979) An update on wound healing. Ann Plast Surg 3(3):264–272

    Article  CAS  PubMed  Google Scholar 

  2. Nour S, Baheiraei N, Imani R et al (2019) A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. J Mater Sci Mater Med 30(10):120

    Article  PubMed  Google Scholar 

  3. Powers JG, Higham C, Broussard K, Phillips TJ (2016) Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol 74(4):607–625

    Article  PubMed  Google Scholar 

  4. Willenborg S, Injarabian L, Eming SA (2022) Role of macrophages in wound healing. Cold Spring Harb Perspect Biol 14(12):a041216

    Article  CAS  PubMed  Google Scholar 

  5. Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol 9(11):1623–1636

    Article  CAS  PubMed  Google Scholar 

  6. Vuorio T, Jauhiainen S, Ylä-Herttuala S (2012) Pro- and anti-angiogenic therapy and atherosclerosis with special emphasis on vascular endothelial growth factors. Expert Opin Biol Ther 12(1):79–92

    Article  CAS  PubMed  Google Scholar 

  7. Shapouri-Moghaddam A, Mohammadian S, Vazini H et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440

    Article  CAS  PubMed  Google Scholar 

  8. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK (2001) The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 24:169–181

    Article  CAS  PubMed  Google Scholar 

  9. Rai V, Moellmer R, Agrawal DK (2023) Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer. Mol Biol Rep 50:1913–1929

    Article  CAS  PubMed  Google Scholar 

  10. Jumper N, Paus R, Bayat A (2015) Functional histopathology of keloid disease. Histol Histopathol 30:1033–1057

    CAS  PubMed  Google Scholar 

  11. Chang M, Nguyen TT (2021) Strategy for treatment of infected diabetic foot ulcers. Acc Chem Res 54:1080–1093

    Article  CAS  PubMed  Google Scholar 

  12. Kim SG (2022) 4-hexylresorcinol: pharmacologic chaperone and its application for wound healing. Maxillofac Plast Reconstr Surg 44:5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim MK, Kim SG, Lee SK (2020) 4-hexylresorcinol-induced angiogenesis potential in human endothelial cells. Maxillofac Plast Reconstr Surg 42:23

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim SG (2022) Multiple ways for the same destination: bone regeneration. Maxillofac Plast Reconstr Surg 44:9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kolpakov AI, Il’inskaia ON, Bespalov MM et al (2000) Stabilization of enzymes by anabiosis autoinducers as a possible mechanism of resistance of resting microbial forms. Mikrobiologiia 69:224–230

    CAS  PubMed  Google Scholar 

  16. DiMario JX (2002) Activation and repression of growth factor receptor gene transcription (review). Int J Mol Med 10:65–71

    CAS  PubMed  Google Scholar 

  17. Kim SG, Kim AS, Jeong JH, Choi JY, Kweon H (2012) 4-hexylresorcinol stimulates the differentiation of SCC-9 cells through the suppression of E2F2, E2F3 and Sp3 expression and the promotion of Sp1 expression. Oncol Rep 28:677–681

    Article  CAS  PubMed  Google Scholar 

  18. Kang YJ, Yang WG, Chae WS, Kim DW, Kim SG, Rotaru H (2022) Administration of 4-hexylresorcinol increases p53-mediated transcriptional activity in oral cancer cells with the p53 mutation. Oncol Rep 48:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viale-Bouroncle S, Felthaus O, Schmalz G, Reichert TE, Morsczeck C (2013) Transcription factors for dental stem cell differentiation. Int J Oral Maxillofac Implants 28:e478–e486

    Article  PubMed  Google Scholar 

  20. Wang P, Wang HY, Gao XJ, Zhu HX, Zhang XP, Liu F, Wang W (2023) Encoding and decoding of p53 dynamics in cellular response to stresses. Cell 12:490

    Article  Google Scholar 

  21. Asl ER, Rostamzadeh D, Duijf PHG et al (2023) Mutant P53 in the formation and progression of the tumor microenvironment: friend or foe. Life Sci 315:121361

    Article  CAS  PubMed  Google Scholar 

  22. Thomas K, Wu J, Sung DY et al (2007) SP1 transcription factors in male germ cell development and differentiation. Mol Cell Endocrinol 270:1–7

    Article  CAS  PubMed  Google Scholar 

  23. Aka JA, Kim GW, Yang XJ (2002) Histone deacetylases: the biology and clinical. BMC Cancer 2:35

    Google Scholar 

  24. Wang L, Wei D, Huang S et al (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9:6371–6380

    CAS  PubMed  Google Scholar 

  25. Jiang NY, Woda BA, Banner BF, Whalen GF, Dresser KA, Lu D (2008) Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 17:1648–1652

    Article  CAS  PubMed  Google Scholar 

  26. Beishline K, Azizkhan-Clifford J (2015) Sp1 and the ‘hallmarks of cancer’. FEBS J 282:224–258

    Article  CAS  PubMed  Google Scholar 

  27. Liu ZL, Bi XW, Liu PP et al (2018) Expressions and prognostic values of the E2F transcription factors in human breast carcinoma. Cancer Manag Res 10:3521–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ye WY, Lu HP, Li JD et al (2021) Clinical implication of E2F transcription factor 1 in hepatocellular carcinoma tissues. Cancer Biother Radiopharm 38:684. https://doi.org/10.1089/cbr.2020.4342

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Lyu L, Wang W, Zhang L (2022) High expression of E2F transcription factors 7: an independent predictor of poor prognosis in patients with lung adenocarcinoma. Medicine (Baltimore) 101:e29253

    Article  CAS  PubMed  Google Scholar 

  30. Endo-Munoz L, Dahler A, Teakle N et al (2009) E2F7 can regulate proliferation, differentiation, and apoptotic responses in human keratinocytes: implications for cutaneous squamous cell carcinoma formation. Cancer Res 69:1800–1808

    Article  CAS  PubMed  Google Scholar 

  31. Kim JY, Kim DW, Lee SK et al (2021) Increased expression of TGF-β1 by 4-hexylresorcinol is mediated by endoplasmic reticulum and mitochondrial stress in human umbilical endothelial vein cells. Appl Sci 11(19):9128

    Article  CAS  Google Scholar 

  32. Kim DW, Jo YY, Garagiola U et al (2020) Increased level of vascular endothelial growth factors by 4-hexylresorcinol is mediated by transforming growth factor-β1 and accelerates capillary regeneration in the burns in diabetic animals. Int J Mol Sci 21(10):3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sivamani RK, Garcia MS, Isseroff RR (2007) Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci 12:2849–2868

    Article  PubMed  Google Scholar 

  34. O’Kane S, Ferguson MW (1997) Transforming growth factor beta s and wound healing. Int J Biochem Cell Biol 29:63–78

    Article  PubMed  Google Scholar 

  35. Jude EB, Blakytny R, Bulmer J, Boulton AJ, Ferguson MW (2002) Transforming growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers. Diabet Med 19:440–447

    Article  CAS  PubMed  Google Scholar 

  36. Wang XJ, Han G, Owens P, Siddiqui Y, Li AG (2006) Role of TGF beta-mediated inflammation in cutaneous wound healing. J Investig Dermatol Symp Proc 11(1):112–117

    Article  CAS  PubMed  Google Scholar 

  37. Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL (2003) Growth factors in the treatment of diabetic foot ulcers. Br J Surg 90:133–146

    Article  CAS  PubMed  Google Scholar 

  38. Wahl SM (1994) Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med 180:1587–1590

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Kim DW, Kim SG, Kim TW (2020) 4-hexylresorcinol administration increases dental hard tissue formation and incisor eruption rate in rats. Appl Sci 10(16):5511

    Article  CAS  Google Scholar 

  40. Song JY, Kim SG, Park NR, Choi JY (2018) Porcine bone incorporated with 4-hexylresorcinol increases new bone formation by suppression of the nuclear factor kappa B signaling pathway. J Craniofac Surg 29(7):1983–1990

    Article  PubMed  Google Scholar 

  41. Ahn J, Kim SG, Kim MK et al (2016) Topical delivery of 4-hexylresorcinol promotes wound healing via tumor necrosis factor-α suppression. Burns 42(7):1534–1541

    Article  PubMed  Google Scholar 

  42. Steiner CA, Cartwright IM, Taylor CT, Colgan SP (2022) Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 323(3):C866–C878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Long HQ, Li GS, Cheng X, Xu JH, Li FB (2015) Role of hypoxia-induced VEGF in blood-spinal cord barrier disruption in chronic spinal cord injury. Chin J Traumatol 18(5):293–295

    Article  CAS  PubMed  Google Scholar 

  44. Miatmoko A, Hariawan BS, Cahyani DM et al (2023) Prospective use of amniotic mesenchymal stem cell metabolite products for tissue regeneration. J Biol Eng 17(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  45. **ao W, Yang Y, Chu C et al (2023) Macrophage response mediated by extracellular matrix: recent progress. Biomed Mater 18(1):012003

    Article  Google Scholar 

  46. Kim SG (2020) Immunomodulation for maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 42:5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim MK, Yoon CS, Kim SG, Park YW, Lee SS, Lee SK (2019) Effects of 4-hexylresorcinol on protein expressions in RAW 264.7 cells as determined by immunoprecipitation high performance liquid chromatography. Sci Rep 9:3379

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee PY, Chesnoy S, Huang L (2004) Electroporatic delivery of TGF-beta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol 123:791–798

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Wang G, Wang W et al (2023) Bone marrow mesenchymal stem cells paracrine TGF-β1 to mediate the biological activity of osteoblasts in bone repair. Cytokine 164:156139

    Article  CAS  PubMed  Google Scholar 

  50. Dauer P, Gupta VK, McGinn O et al (2017) Inhibition of Sp1 prevents ER homeostasis and causes cell death by lysosomal membrane permeabilization in pancreatic cancer. Sci Rep 7:1564

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shu B, Zhang RZ, Zhou YX, He C, Yang X (2022) METTL3-mediated macrophage exosomal NEAT1 contributes to hepatic fibrosis progression through Sp1/TGF-β1/Smad signaling pathway. Cell Death Discov 8:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim JY, Kweon HY, Kim DW, Choi JY, Kim SG (2021) 4-hexylresorcinol inhibits class I histone deacetylases in human umbilical cord endothelial cells. Appl Sci 11:3486

    Article  CAS  Google Scholar 

  53. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA (2001) DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 61:1327–1333

    CAS  PubMed  Google Scholar 

  54. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    Article  CAS  PubMed  Google Scholar 

  55. Hepp MI, Escobar D, Farkas C et al (2018) A Trichostatin a (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells. Biochim Biophys Acta Gene Regul Mech 1861(7):623–636

    Article  CAS  Google Scholar 

  56. Koppaka V, Lakshman N, Petroll WM (2015) Effect of HDAC inhibitors on corneal keratocyte mechanical phenotypes in 3-D collagen matrices. Mol Vis 21:502–514

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Park HJ, Jeong OY, Chun SH et al (2021) Butyrate improves skin/lung fibrosis and intestinal dysbiosis in bleomycin-induced mouse models. Int J Mol Sci 22:2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim YS, Kim DW, Kim SG, Lee SK (2020) 4-hexylresorcinol-induced protein expression changes in human umbilical cord vein endothelial cells as determined by immunoprecipitation high-performance liquid chromatography. PLoS One 15(12):e0243975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hernandez I, Cohen M (2022) Linking cell-surface GRP78 to cancer: from basic research to clinical value of GRP78 antibodies. Cancer Lett 524:1–14

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Carbonero N, Li W, Cabeza-Morales M, Martinez-Useros J, Garcia-Foncillas J (2018) New hope for pancreatic ductal adenocarcinoma treatment targeting endoplasmic reticulum stress response: a systematic review. Int J Mol Sci 19(9):2468

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lee IS, Chang JH, Kim DW, Kim SG, Kim TW (2021) The effect of 4-hexylresorinol administration on NAD+ level and SIRT activity in Saos-2 cells. Maxillofac Plast Reconstr Surg 43:39

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin S, **ng H, Zang T, Ruan X, Wo L, He M (2018) Sirtuins in mitochondrial stress: indispensable helpers behind the scenes. Ageing Res Rev 44:22–32

    Article  CAS  PubMed  Google Scholar 

  63. Kushneruk MA, Tugarova AV, Il’chukova AV et al (2013) Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense. Microbiology 82:572–578

    Article  CAS  Google Scholar 

  64. Musto JD, Sane JN, Warner VD (1979) Quantitative determination of hexylresorcinol in commercial antiseptic solution by high-pressure liquid chromatography. J Pharm Sci 68(2):240–241

    Article  CAS  PubMed  Google Scholar 

  65. Tereshkin EV, Loiko NG, Tereshkina KB, Kovalenko VV, Krupyanskii YF (2022) Possible mechanisms of 4-hexylresorcinol influence on DNA and DNA–Dps nanocrystals affecting stress sustainability of Escherichia coli. Russ J Phys Chem B 16(4):726–737

    Article  CAS  Google Scholar 

  66. Kusaczuk M (2019) Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cell 8(12):1471

    Article  CAS  Google Scholar 

  67. Davydova O, Deryabin D, El’-Registan G (2006) Influence of chemical analogues of microbial autoregulators on the sensitivity of DNA to UV radiation. Microbiology 75(5):654–661

    CAS  PubMed  Google Scholar 

  68. Pan X, You C, Wu P, Wang X, Han C (2023) The optimization of PLGA knitted mesh reinforced-collagen/chitosan scaffold for the healing of full-thickness skin defects. J Biomed Mater Res B Appl Biomater 111(4):763–774

    Article  CAS  PubMed  Google Scholar 

  69. Li M, Yin S, Lin M et al (2022) Current status and prospects of metal-organic frameworks for bone therapy and bone repair. J Mater Chem B 10(27):5105–5128

    Article  CAS  PubMed  Google Scholar 

  70. Czech T, Oyewumi MO (2021) Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res 11(3):842–865

    Article  CAS  PubMed  Google Scholar 

  71. Teng F, Yu D, Wei L, Su N, Liu Y (2019) Preclinical application of recombinant human bone morphogenetic protein 2 on bone substitutes for vertical bone augmentation: a systematic review and meta-analysis. J Prosthet Dent 122(4):355–363

    Article  CAS  PubMed  Google Scholar 

  72. Chang JH, Kim DW, Kim SG, Kim TW (2021) Alleviation of oxidative stress in dental pulp cells following 4-hexylresorcinol administration in a rat model. Appl Sci 11:3637–3649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, SG. (2024). The Application of 4-Hexylresorcinol for Wound Healing. In: Biomedical Application of 4-Hexylresorcinol. Springer, Singapore. https://doi.org/10.1007/978-981-97-0637-2_6

Download citation

Publish with us

Policies and ethics

Navigation