Multi-branch Network with Cross-Domain Feature Fusion for Anomalous Sound Detection

  • Conference paper
  • First Online:
Man-Machine Speech Communication (NCMMSC 2023)

Abstract

Anomalous sound detection (ASD) is a key technology to identify abnormal sounds in various industries. Self-supervised anomalous sound detection aims at detecting unknown machine anomalous sounds by learning the characteristics of the normal sounds using metainformation. In this paper, we propose a multi-branch network with cross-domain feature fusion (MBN-CFF) for self-supervised ASD task. The multi-branch network splits the complete feature representations and feeds them individually into classifiers to generate category predictions. The weighted loss, calculated by multiple predictions and the real labels, guides the model training process. We also design a cross-domain feature fusion (CFF) block for effectively fusing the time-domain and frequency-domain features and an attentive sandglass (AS) block for effectively extracting features. Experimental results on the DCASE2020 challenge task 2 show that our MBN-CFF network achieves the best performance with the AUC score of 94.73% and pAUC score of 88.74%, respectively, compared to the other five existing methods for anomalous sound detection. The results of ablation experiments show the effectiveness of CFF and AS blocks, multi-brach prediction (MBP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.11
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altinors, A., Yol, F., Yaman, O.: A sound based method for fault detection with statistical feature extraction in UAV motors. Appl. Acoust. 183, 108325 (2021)

    Article  Google Scholar 

  2. Chen, H., Ran, L., Sun, X., Cai, C.: SW-WAVENET: learning representation from spectrogram and WaveGram using WaveNet for anomalous sound detection. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5 (2023)

    Google Scholar 

  3. Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_46

    Chapter  Google Scholar 

  4. Crocco, M., Cristani, M., Trucco, A., Murino, V.: Audio surveillance: a systematic review. ACM Comput. Surv. (CSUR) 48(4), 1–46 (2016)

    Article  Google Scholar 

  5. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  6. Ding, X., Guo, Y., Ding, G., Han, J.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  7. Dohi, K., Endo, T., Purohit, H., Tanabe, R., Kawaguchi, Y.: Flow-based self-supervised density estimation for anomalous sound detection. In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 336–340 (2021)

    Google Scholar 

  8. Giri, R., Tenneti, S.V., Cheng, F., Helwani, K., Isik, U., Krishnaswamy, A.: Self-supervised classification for detecting anomalous sounds. In: Detection and Classification of Acoustic Scenes and Events Workshop 2020 (2020)

    Google Scholar 

  9. Guan, J., **ao, F., Liu, Y., Zhu, Q., Wang, W.: Anomalous sound detection using audio representation with machine id based contrastive learning pretraining. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5 (2023)

    Google Scholar 

  10. Hayashi, T., Yoshimura, T., Adachi, Y.: Conformer-based id-aware autoencoder for unsupervised anomalous sound detection. DCASE2020 Challenge, Technical report (2020)

    Google Scholar 

  11. He, T., Shen, L., Guo, Y., Ding, G., Guo, Z.: SECRET: self-consistent pseudo label refinement for unsupervised domain adaptive person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, pp. 879–887 (2022)

    Google Scholar 

  12. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13713–13722 (2021)

    Google Scholar 

  13. Hu, Y., Zhu, X., Li, Y., Huang, H., He, L.: A multi-grained based attention network for semi-supervised sound event detection. ar**v preprint ar**v:2206.10175 (2022)

  14. Jiang, A., Zhang, W.Q., Deng, Y., Fan, P., Liu, J.: Unsupervised anomaly detection and localization of machine audio: a GAN-based approach. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5 (2023). https://doi.org/10.1109/ICASSP49357.2023.10096813

  15. Kapka, S.: ID-conditioned auto-encoder for unsupervised anomaly detection. ar**v preprint ar**v:2007.05314 (2020)

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  17. Koizumi, Y., et al.: Description and discussion on DCASE2020 challenge task2: unsupervised anomalous sound detection for machine condition monitoring. ar**v preprint ar**v:2006.05822 (2020)

  18. Koizumi, Y., Saito, S., Uematsu, H., Harada, N., Imoto, K.: ToyADMOS: a dataset of miniature-machine operating sounds for anomalous sound detection. In: 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 313–317 (2019)

    Google Scholar 

  19. Liu, Y., Guan, J., Zhu, Q., Wang, W.: Anomalous sound detection using spectral-temporal information fusion. In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 816–820 (2022)

    Google Scholar 

  20. Lojka, M., Pleva, M., Kiktová, E., Juhár, J., Čižmár, A.: Efficient acoustic detector of gunshots and glass breaking. Multimed. Tools Appl. 75, 10441–10469 (2016)

    Article  Google Scholar 

  21. Mai, K.T., Davies, T., Griffin, L.D., Benetos, E.: Explaining the decision of anomalous sound detectors. In: Proceedings of the 7th Detection and Classification of Acoustic Scenes and Events 2022 Workshop (DCASE2022), Nancy, France (2022)

    Google Scholar 

  22. Mori, H., Tamura, S., Hayamizu, S.: Anomalous sound detection based on attention mechanism. In: 2021 29th European Signal Processing Conference (EUSIPCO), pp. 581–585 (2021)

    Google Scholar 

  23. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters - improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  24. Principi, E., Vesperini, F., Squartini, S., Piazza, F.: Acoustic novelty detection with adversarial autoencoders. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3324–3330 (2017)

    Google Scholar 

  25. Purohit, H., et al.: MIMII dataset: sound dataset for malfunctioning industrial machine investigation and inspection. ar**v preprint ar**v:1909.09347 (2019)

  26. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021)

    Article  Google Scholar 

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  28. Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., Kawaguchi, Y.: Anomalous sound detection based on interpolation deep neural network. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 271–275 (2020)

    Google Scholar 

  29. Suman, A., Kumar, C., Suman, P.: Early detection of mechanical malfunctions in vehicles using sound signal processing. Appl. Acoust. 188, 108578 (2022)

    Article  Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  31. Wan, Q., Huang, Z., Lu, J., Yu, G., Zhang, L.: SeaFormer: Squeeze-enhanced axial transformer for mobile semantic segmentation. ar**v preprint ar**v:2301.13156 (2023)

  32. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  33. Wu, J., Yang, F., Hu, W.: Unsupervised anomalous sound detection for industrial monitoring based on ArcFace classifier and gaussian mixture model. Appl. Acoust. 203, 109188 (2023)

    Article  Google Scholar 

  34. Zeng, X.M., et al.: Joint generative-contrastive representation learning for anomalous sound detection. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5 (2023)

    Google Scholar 

  35. Zeng, Y., Liu, H., Xu, L., Zhou, Y., Gan, L.: Robust anomaly sound detection framework for machine condition monitoring. Technical report, DCASE2022 Challenge (2022)

    Google Scholar 

  36. Zhang, H., Guan, J., Zhu, Q., **ao, F., Liu, Y.: Anomalous sound detection using self-attention-based frequency pattern analysis of machine sounds. ar**v preprint ar**v:2308.14063 (2023)

  37. Zhang, J., et al.: Rethinking mobile block for efficient attention-based models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1389–1400 (2023)

    Google Scholar 

  38. Zhou, D., Hou, Q., Chen, Y., Feng, J., Yan, S.: Rethinking bottleneck structure for efficient mobile network design. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 680–697. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_40

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the Multi-lingual Information Technology Research Center of **njiang (ZDI145-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, W., Fan, X., Hu, Y. (2024). Multi-branch Network with Cross-Domain Feature Fusion for Anomalous Sound Detection. In: Jia, J., Ling, Z., Chen, X., Li, Y., Zhang, Z. (eds) Man-Machine Speech Communication. NCMMSC 2023. Communications in Computer and Information Science, vol 2006. Springer, Singapore. https://doi.org/10.1007/978-981-97-0601-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0601-3_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0600-6

  • Online ISBN: 978-981-97-0601-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation