Life Cycle Assessment and Tools

  • Chapter
  • First Online:
Handbook of Materials Circular Economy

Abstract

This chapter offers an overview of Life Cycle Assessment (LCA) as a crucial tool for evaluating the environmental impact of products, processes, and systems. The chapter begins by discussing the benefits of using LCA and its potential to inform decision-making processes and identify opportunities for improvement. The chapter then covers the different types of LCA available and provides guidance on how to choose the appropriate type of LCA for a particular study. The steps involved in LCA are presented in detail, including goal and scope definition, inventory analysis, life cycle impact assessment, and interpretation of results. Specific aspects of LCA are also discussed, such as linear model life cycle inventory and inventory modelling. The chapter emphasizes the importance of data availability and integrity, including the temporal, geographic, and technological coverage of datasets and the use of open-source and subscription databases. Additionally, materials inflow and outflow analysis are presented as an essential aspect of LCA. The chapter concludes by highlighting the standards for LCA and Materials Circular Economy (MCE), providing readers with a comprehensive guide to LCA and its role in promoting sustainable practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Heijungs, G. Huppes and J. B. Guinée, Polymer Degradation and Stability, 2010, 95, 422–428.

    Google Scholar 

  2. R. U. Ayres, Resources, Conservation and Recycling, 1995, 14, 199–223.

    Google Scholar 

  3. Ramasubramanian, B., Rao, R. P., Chellappan, V., & Ramakrishna, S. (2022). Towards sustainable fuel cells and batteries with an AI perspective. Sustainability, 14(23), 16001.

    Google Scholar 

  4. A. Katebi, H. Soleymani Tushmanlo and G. Asadollahfardi, Journal of Building Engineering, 2023, 76, 107316.

    Google Scholar 

  5. filipeboni, 5 Benefits of Conducting a Life Cycle Assessment, https://ugreen.io/5-benefits-of-conducting-a-life-cycle-assessment/, (accessed July 22, 2023).

  6. Life Cycle Assessment (LCA) | Definition, Phases, Uses, & Example, https://www.carboncollective.co/sustainable-investing/life-cycle-assessment-lca, (accessed July 20, 2023).

  7. S. R. Hinish, Cradle-to-Cradle System Design, https://www.supplychainqueen.com/cradle-to-cradle-system-design-reflections-by-dr-michael-braungart/, (accessed December 15, 2023).

  8. Life Cycle Analysis - an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/earth-and-planetary-sciences/life-cycle-analysis, (accessed July 20, 2023).

  9. B. Steen, Management of Environmental Quality: An International Journal, 2005, 16, 107–118.

    Google Scholar 

  10. Environmental and economic assessment of waste collection and transportation using LCA: A case study - ScienceDirect, https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S0013935123009003, (accessed July 20, 2023).

  11. E. Sai, R. Koide and S. Murakami, Sustainable Production and Consumption, 2023, 38, 331–340.

    Google Scholar 

  12. T. Schaubroeck, Frontiers in Sustainability, DOI: https://doi.org/10.3389/frsus.2023.1063583.

  13. Prospective consequential Life Cycle Assessment: Identifying the future marginal suppliers using Integrated Assessment Models | Energy | ChemRxiv | Cambridge Open Engage, https://chemrxiv.org/engage/chemrxiv/article-details/63ee10cdfcfb27a31fe227df, (accessed July 20, 2023).

  14. Why and when?, https://consequential-lca.org/clca/why-and-when/, (accessed July 20, 2023).

  15. Why and when?, https://consequential-lca.org/clca/why-and-when/, (accessed December 15, 2023).

  16. F. Creutzig, A. Popp, R. Plevin, G. Luderer, J. Minx and O. Edenhofer, Nature Clim Change, 2012, 2, 320–327.

    Google Scholar 

  17. Life Cycle Assessment (LCA) explained, https://pre-sustainability.com/articles/life-cycle-assessment-lca-basics/, (accessed December 15, 2023).

  18. L. Nickel, How to define the Goal & Scope of your LCA, https://ecochain.com/knowledge/how-to-define-the-goal-scope-of-your-lca/, (accessed July 20, 2023).

  19. J. Navarro and F. Zhao, Frontiers in Energy Research.

    Google Scholar 

  20. M. A. Curran, in Goal and Scope Definition in Life Cycle Assessment, ed. M. A. Curran, Springer Netherlands, Dordrecht, 2017, pp. 1–62.

    Google Scholar 

  21. Life Cycle Assessment (LCA) explained, https://pre-sustainability.com/articles/life-cycle-assessment-lca-basics/, (accessed July 20, 2023).

  22. Goal and Scope Definition in Life Cycle Assessment, https://www.springerprofessional.de/en/goal-and-scope-definition-in-life-cycle-assessment/10736652, (accessed July 20, 2023).

  23. A. Bjørn, A. Moltesen, A. Laurent, M. Owsianiak, A. Corona, M. Birkved and M. Z. Hauschild, in Life Cycle Assessment: Theory and Practice, eds. M. Z. Hauschild, R. K. Rosenbaum and S. I. Olsen, Springer International Publishing, Cham, 2018, pp. 117–165.

    Google Scholar 

  24. T. Ekvall and B. P. Weidema, Int. J. LCA, 2004, 9, 161–171.

    Google Scholar 

  25. S. Suh and G. Huppes, Journal of Cleaner Production, 2005, 13, 687–697.

    Google Scholar 

  26. openLCA Nexus: The source for LCA data sets, https://nexus.openlca.org/, (accessed July 20, 2023).

  27. R. H. Crawford, P.-A. Bontinck, A. Stephan, T. Wiedmann and M. Yu, Journal of Cleaner Production, 2018, 172, 1273–1288.

    Google Scholar 

  28. C. Spreafico, D. Landi and D. Russo, Sustainable Production and Consumption, 2023, 38, 241–251.

    Google Scholar 

  29. J. Nakatani, Sustainability, 2014, 6, 6158–6169.

    Google Scholar 

  30. Y. Yang and R. Heijungs, Int J Life Cycle Assess, 2018, 23, 751–758.

    Google Scholar 

  31. T. Xayachak, N. Haque, D. Lau, R. Parthasarathy and B. K. Pramanik, Process Safety and Environmental Protection, 2023, 173, 592–603.

    Google Scholar 

  32. J. Li, Y. Tian and K. **e, Ecological Indicators, 2023, 153, 110455.

    Google Scholar 

  33. A. Azapagic and R. Clift, Int. J. LCA, 1998, 3, 305–316.

    Google Scholar 

  34. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz and B. Weidema, Int J Life Cycle Assess, 2016, 21, 1218–1230.

    Google Scholar 

  35. L. Zakrisson, E. S. Azzi and C. Sundberg, Int J Life Cycle Assess, 2023, 28, 907–923.

    Google Scholar 

  36. G. Mai, W. Huang, J. Sun, S. Song, D. Mishra, N. Liu, S. Gao, T. Liu, G. Cong, Y. Hu, C. Cundy, Z. Li, R. Zhu and N. Lao, On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence, https://arxiv.org/abs/2304.06798v1, (accessed July 20, 2023).

  37. G. Giusti, D. V. da Silva, A. C. G. Albino, Y. de Souza Tadano and D. A. L. Silva, Int J Life Cycle Assess, DOI: https://doi.org/10.1007/s11367-023-02184-8.

  38. M. R. Seyedabadi, S. Samareh Abolhassani and U. Eicker, Journal of Building Engineering, 2023, 76, 107101.

    Google Scholar 

  39. L. Riondet, M. Rio, V. Perrot-Bernardet and P. Zwolinski, Procedia CIRP, 2023, 116, 714–719.

    Google Scholar 

  40. S. Langkau, B. Steubing, C. Mutel, M. P. Ajie, L. Erdmann, A. Voglhuber-Slavinsky and M. Janssen, Int J Life Cycle Assess, DOI: https://doi.org/10.1007/s11367-023-02175-9.

  41. R. N. Hansen, F. N. Rasmussen, M. Ryberg and H. Birgisdóttir, Int J Life Cycle Assess, 2023, 28, 131–145.

    Google Scholar 

  42. S. Bruhn, R. Sacchi, C. Cimpan and M. Birkved, Building and Environment, 2023, 242, 110535.

    Google Scholar 

  43. G. Guignone, J. L. Calmon, D. Vieira and A. Bravo, Journal of Building Engineering, 2023, 73, 106780.

    Google Scholar 

  44. V. De Laurentiis, A. Amadei, E. Sanyé-Mengual and S. Sala, Int J Life Cycle Assess, , DOI: https://doi.org/10.1007/s11367-023-02188-4.

  45. N. Quernheim, S. Winter, L. Arnemann and B. Schleich, Proceedings of the Design Society, 2023, 3, 2635–2644.

    Google Scholar 

  46. S. Minner and M. Yao, Review of Multi-Supplier Inventory Models in Supply Chain Management: An Update, 2017.

    Google Scholar 

  47. A. Federgruen and P. Zipkin, Mathematics of Operations Research, 1986, 11, 193–207.

    Google Scholar 

  48. C. Ugaya, J. B. de Araújo, A. Souza, B. B. T. do Carmo, S. A. de Oliveira and V. G. Maciel, Int J Life Cycle Assess, 2023, 28, 199–218.

    Google Scholar 

  49. R. K. Rosenbaum, M. Z. Hauschild, A.-M. Boulay, P. Fantke, A. Laurent, M. Núñez and M. Vieira, in Life Cycle Assessment: Theory and Practice, eds. M. Z. Hauschild, R. K. Rosenbaum and S. I. Olsen, Springer International Publishing, Cham, 2018, pp. 167–270.

    Google Scholar 

  50. J. C. Bare, Clean Techn Environ Policy, 2010, 12, 341–351.

    Google Scholar 

  51. M. Z. Hauschild, M. Goedkoop, J. Guinée, R. Heijungs, M. Huijbregts, O. Jolliet, M. Margni, A. De Schryver, S. Humbert, A. Laurent, S. Sala and R. Pant, Int J Life Cycle Assess, 2013, 18, 683–697.

    Google Scholar 

  52. S. V. Withanage and K. Habib, Sustainability, 2021, 13, 7939.

    Google Scholar 

  53. M. A. Curran, Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products, John Wiley & Sons, 2012.

    Google Scholar 

  54. D. Laner and H. Rechberger, in Special Types of Life Cycle Assessment, ed. M. Finkbeiner, Springer Netherlands, Dordrecht, 2016, pp. 293–332.

    Google Scholar 

  55. M. Damiani, T. Sinkko, C. Caldeira, D. Tosches, M. Robuchon and S. Sala, Environmental Impact Assessment Review, 2023, 101, 107134.

    Google Scholar 

  56. J. Ferdous, F. Bensebaa and N. Pelletier, Journal of Cleaner Production, 2023, 402, 136804.

    Google Scholar 

  57. H. Mostafaei, Z. Keshavarz, M. A. Rostampour, D. Mostofinejad and C. Wu, Structures, 2023, 53, 279–295.

    Google Scholar 

  58. M. Smurthwaite, L. Jiang and K. S. Williams, Environ Dev Sustain, DOI:https://doi.org/10.1007/s10668-023-03453-0.

  59. M. Niero and P. P. Kalbar, Resources, Conservation and Recycling, 2019, 140, 305–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seeram Ramakrishna .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramakrishna, S., Ramasubramanian, B. (2024). Life Cycle Assessment and Tools. In: Handbook of Materials Circular Economy. Springer, Singapore. https://doi.org/10.1007/978-981-97-0589-4_2

Download citation

Publish with us

Policies and ethics

Navigation