Bird-Inspired Nonlinear Oscillator with Triboelectric Nanogenerator for Vibration Control and Energy Harvesting

  • Conference paper
  • First Online:
Advances in Applied Nonlinear Dynamics, Vibration, and Control – 2023 (ICANDVC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1152))

  • 430 Accesses

Abstract

A bird-inspired nonlinear oscillator (BINO) is proposed for low-frequency vibration control and energy harvesting of bridges. By integrating the spring into the oscillator, the space utilization rate and reliability are further improved. Theoretical analysis and experimental results show that BINO with triboelectric nanogenerator damper (BINO-TENGD) with quasi-zero stiffness (QZS) has excellent low-frequency vibration isolation performance and stable output voltage. In addition, BINO-TENG can produce resonance phenomenon in the frequency range of 3-8 Hz under bistable condition, and obtain high output. Finally, BINO-TENGD under QZS condition is applied to the beam bridge, and the results show that adding BINO-TENGD to the beam bridge is beneficial to suppress vibration. Therefore, BINO has a certain application prospect in the fields of bridge low-frequency vibration control, vibration detection and energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, H., Jasim, A., Chen, X.: Energy harvesting technologies in roadway and bridge for different applications - a comprehensive review. Appl. Energy 212, 1083–1094 (2018)

    Google Scholar 

  2. Bouna, H.S., Nbendjo, B., Woafo, P.: Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation. Nonlinear Dyn. 100(2), 1125–1141 (2020)

    Google Scholar 

  3. Li, M., **g, X.: Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting. Appl. Energy 255, 113829 (2019)

    Google Scholar 

  4. Zhang, Y., **e, J., Peng, J., Li, H., Huang, Y.: A deep neural network-based vehicle re-identification method for bridge load monitoring. Adv. Struct. Eng. 24(16), 3691–3706 (2021)

    Google Scholar 

  5. Chen, Q., et al.: Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the forth road bridge in the UK. Remote Sens. 10(3), 364 (2018)

    Google Scholar 

  6. Lovett, G.M., Burns, D.A., Driscoll, C.T., Jenkins, J.C., Mitchell, M.J.: Who needs environmental monitoring?. Front. Ecol. Environ. 5(5), 253–260 (2007)

    Google Scholar 

  7. Tsukada, T., Minakuchi, S., Takeda, N.: Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors. J. Compos. Mater. 53(24), 3445–3458 (2019)

    Google Scholar 

  8. A. Zona, F.: Vision-based vibration monitoring of structures and infrastructures: an overview of recent applications. Infrastructures 6(1), 4 (2020)

    Google Scholar 

  9. Yertutanol, K., Akgün, H., Sopacı, E.: Displacement monitoring, displacement verification and stability assessment of the critical sections of the Konak tunnel, İzmir, Turkey. Tunnel. Underground Space Technol. 101, 103357 (2020)

    Google Scholar 

  10. Margielewicz, J., Gaska, D., Litak, G., Wolszczak, P., Yurchenko, D.: Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness. Appl. Energy 307, 118159 (2022)

    Google Scholar 

  11. Rezaei, M., Talebitooti, R., Liao, W.: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation. Int. J. Mech. Sci. 207, 106618 (2016)

    Google Scholar 

  12. Rezaei, M., Talebitooti, R.: Investigating the performance of tri-stable magneto-piezoelastic absorber in simultaneous energy harvesting and vibration isolation. Appl. Math. Model. 102, 661–693 (2022)

    Google Scholar 

  13. Lu, Z., Zhao, L., Ding, H., Chen, L.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021)

    Google Scholar 

  14. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Google Scholar 

  15. Chai, Y., **g, X., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022)

    Google Scholar 

  16. Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87, 987–1014 (2017)

    Google Scholar 

  17. Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332, 3377–3389 (2013)

    Google Scholar 

  18. Ding, H., Ji, J., Chen, L.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Sig. Process. 121, 675–688 (2019)

    Google Scholar 

  19. Han, Y., et al.: Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. In: Advanced Functional Materials. CONFERENCE 2021, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2021). https://doi.org/10.1002/202108580

  20. Zhang, B., et al.: All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 43, 37–44 (2021)

    Google Scholar 

  21. Mathew, A.A., Chandrasekhar, A., Vivekanandan, S.: A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 80, 105566 (2021)

    Google Scholar 

  22. Wang, P., et al.: An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12(9), 9433–9440 (2018)

    Google Scholar 

  23. Tian, J., et al.: Self-powered room-temperature ethanol sensor based on brush-shaped triboelectric nanogenerator. Research 1, 11 (2021)

    Google Scholar 

  24. Hao, Z., Wang, D., Wiercigroch, M.: Nonlinear dynamics of new magneto-mechanical oscillator. Commun. Nonlinear Sci. Numer. Simul. 105, 106092 (2022)

    Google Scholar 

  25. Safaei, M., Sodano, H., Anton, S.R.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28, 113001 (201)

    Google Scholar 

  26. Wang, Z., Jiang, T., Xu, L.: Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017)

    Google Scholar 

  27. Zi, Y., Guo, H., Wen, Z., Yeh, M.H., Hu, C., Wang, Z.L.: Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016)

    Google Scholar 

  28. Du, Y., Deng, J., Li, P., Wen, Y.: Energy transfer and redistribution: an approach for unifying vibrational energy harvesting and vibration attenuation. Nano Energy 78, 105245 (2020)

    Google Scholar 

  29. Wu, C., Liu, R., Wang, J., Zi, Y., Lin, L., Wang, Z.L.: A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 32, 287–293 (2017)

    Google Scholar 

  30. Yang, T., Zhou, S., Fang, S., Qin, W., Inman, D.J.: Nonlinear vibration energy harvesting and vibration suppression technologies. Appl. Phys. Rev. 8, 031317 (2021)

    Google Scholar 

  31. Huguet, T., Badel, A., Lallart, M.: Exploiting bistable oscillator subharmonics for magnified broadband vibration energy harvesting. Appl. Phys. Lett. 111, 173905 (2017)

    Google Scholar 

  32. Guan, D., Xu, G., **a, X., Wang, J., Zi, Y.: Boosting the output performance of the triboelectric nanogenerator through the nonlinear oscillator. ACS Appl. Mater. Interfaces 13(5), 6331–6338 (2021)

    Google Scholar 

  33. Yang, T., Zhang, Y., Zhou, S.: Multistage oscillators for ultra-low frequency vibration isolation and energy harvesting. Sci. China Technol. Sci. 65, 631–645 (2022)

    Google Scholar 

  34. Yang, T., Cao, Q., Hao, Z.: A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech. Syst. Sig. Process. 155, 107636 (2021)

    Google Scholar 

  35. Luo, H., Liu, J., Yang, T., Zhang, Y., Cao, Q.: Dipteran flight-inspired bistable triboelectric nanogenerator for harvesting low frequency vibration. Nano Energy. J. 103, 107755 (2022)

    Google Scholar 

  36. Feng, X., **g, X.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear dam** & nonlinear inertia. Mech. Syst. Sig. Process. 117, 786–812 (2019)

    Google Scholar 

  37. Yan, G., Wang, S., Zou, H., Zhao, L., Gao, Q., Zhang, W.: Bio-inspired polygonal skeleton structure for vibration isolation: Des. Model. Exp. Sci. China Technol. Sci. 63, 2617–2630 (2020)

    Google Scholar 

  38. Cao, Q., **ong, Y., Wiercigroch, M.: A novel model of dipteran flight mechanism. Int. J. Dyn. Control 1, 1–11 (2013)

    Google Scholar 

  39. Bouna, H.S., Nana Nbendjo, B.R., Woafo, P.: On the dynamics of two multi-span continuous beam bridges model coupled by their close environment. Int. J. Dyn. Control 6, 29–40 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Granted Nos. 12002272 and 12272293), and Guangdong Basic and Applied Basic Research Foundation (Granted No. 2022A1515010967, 2023A1515012821). TY wishes to thank the supports from Hong Kong Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Cui, Y., Yang, T., **g, X. (2024). Bird-Inspired Nonlinear Oscillator with Triboelectric Nanogenerator for Vibration Control and Energy Harvesting. In: **g, X., Ding, H., Ji, J., Yurchenko, D. (eds) Advances in Applied Nonlinear Dynamics, Vibration, and Control – 2023. ICANDVC 2023. Lecture Notes in Electrical Engineering, vol 1152. Springer, Singapore. https://doi.org/10.1007/978-981-97-0554-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0554-2_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0553-5

  • Online ISBN: 978-981-97-0554-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation