Nitrogen Oxide Emissions in Ammonia Combustion

  • Chapter
  • First Online:
Ammonia and Hydrogen for Green Energy Transition

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 284 Accesses

Abstract

Similar to hydrogen, ammonia is a zero-carbon fuel that can be synthesized from renewable energy sources such as solar and wind. Due to its better feasibility for production, preservation, and distribution, ammonia has been considered sustainable to meet the requirements of the future energy fields that are develo** toward a low-carbon economy. However, the broad deployment of ammonia as fuel is limited by \({\text{NO}}_{\text{x}}\) emissions. This chapter presents the pathways of ammonia mixture reactions and the production routes of \({\text{NO}}_{\text{x}}\) emissions with different equivalence ratios. Some critical intermediate radicals are revealed for \({\text{NO}}_{\text{x}}\) formation. It is found that many factors affect the chemical reaction pathways of ammonia-based fuels, such as equivalence ratio, fuel mixture, pressure and temperature, and so forth. Ammonia combustion and \({\text{NO}}_{\text{x}}\) emissions have been investigated under different conditions on both laboratory and industrial scales. It was found that the \({\text{NO}}_{\text{x}}\) productions peaked at Φ = 0.8–0.9 for various ammonia/hydrogen blends. The NO productions from ammonia-based flames were effectively decreased with rich blends because of more generated \({\text{NH}}_{\text{i}}\) (i = 0, 1, 2) radicals. An overall equivalence ratio of 1.20 was suggested for two-stage combustion to improve combustion efficiency and emission performance. Furthermore, some practical controlling techniques, e.g., thermal \({\text{DeNO}}_{\text{x}}\), two-stage combustion, humidification, and plasma-assisted combustion, are introduced for \({\text{NO}}_{\text{x}}\) mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlgren W (2012) Fuel power density. J Press Vessel Technol 134

    Google Scholar 

  • An Z, Zhang M, Zhang W, Mao R, Wei X, Wang J et al (2021) Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method. Fuel 304:121370

    Article  Google Scholar 

  • Anetor L, Odetunde C, Osakue EE (2014) Computational analysis of the extended Zeldovich mechanism. Arab J Sci Eng 39:8287–8305

    Article  Google Scholar 

  • Ariemma GB, Sabia P, Sorrentino G, Bozza P, De Joannon M, Ragucci R (2021) Influence of water addition on MILD ammonia combustion performances and emissions. Proc Combust Inst 38:5147–5154

    Article  Google Scholar 

  • Ariemma GB, Sorrentino G, Ragucci R, de Joannon M, Sabia P (2022) Ammonia/methane combustion: stability and NOx emissions. Combust Flame 241:112071

    Article  Google Scholar 

  • Ariemma GB, Sorrentino G, Sabia P, Ragucci R, de Joannon M (2023) MILD combustion of methanol, ethanol and 1-butanol binary blends with ammonia. Proc Combust Inst 39:4509–4517

    Article  Google Scholar 

  • Barbas M, Costa M, Vranckx S, Fernandes RX (2015) Experimental and chemical kinetic study of CO and NO formation in oxy-methane premixed laminar flames doped with NH3. Combust Flame 162:1294–1303

    Article  Google Scholar 

  • Bartels JR (2008) A feasibility study of implementing an ammonia economy. Iowa State University

    Google Scholar 

  • Bennett AM, Liu P, Li Z, Kharbatia NM, Boyette W, Masri AR et al (2020) Soot formation in laminar flames of ethylene/ammonia. Combust Flame 220:210–218

    Article  Google Scholar 

  • Božo MG, Mashruk S, Zitouni S, Valera-Medina A (2021) Humidified ammonia/hydrogen RQL combustion in a trigeneration gas turbine cycle. Energy Convers Manag 227:113625

    Article  Google Scholar 

  • Britain RS (2020) Great. ammonia: zero-carbon fertiliser, fuel and energy store: policy briefing. R Soc

    Google Scholar 

  • Cai T, Becker SM, Cao F, Wang B, Tang A, Fu J et al (2021a) NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system. Chem Eng J 417:128033

    Article  Google Scholar 

  • Cai T, Zhao D (2022) Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether. Renew Sustain Energy Rev 156:112003

    Article  Google Scholar 

  • Cai T, Zhao D, Sun Y, Ni S, Li W, Guan D et al (2021b) Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate. Renew Sustain Energy Rev 145:111150

    Article  Google Scholar 

  • Cai T, Zhao D, Wang B, Li J, Guan Y (2020) NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor. Fuel 280:118554

    Article  Google Scholar 

  • Capetillo A, Ibarra F (2017) Multiphase injector modelling for automotive SCR systems: a full factorial design of experiment and optimization. Comput Math Appl 74:188–200

    Article  MathSciNet  Google Scholar 

  • Cellek MS (2022) The decreasing effect of ammonia enrichment on the combustion emission of hydrogen, methane, and propane fuels. Int J Hydrogen Energy

    Google Scholar 

  • Chai WS, Bao Y, ** P, Tang G, Zhou L (2021) A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew Sustain Energy Rev 147:111254

    Article  Google Scholar 

  • Chiesa P, Lozza G, Mazzocchi L (2005) Using hydrogen as gas turbine fuel. J Eng Gas Turbines Power 127:73–80

    Article  Google Scholar 

  • Choe J, Sun W, Ombrello T, Carter C (2021) Plasma assisted ammonia combustion: Simultaneous NOx reduction and flame enhancement. Combust Flame 228:430–432

    Article  Google Scholar 

  • Choe J, Sun W (2022) Plasma assisted ammonia combustion: enhanced flame stability and reduced NOx emission. In: AIAA SCITECH 2022 Forum, p 1452

    Google Scholar 

  • Climate.gov N. Climate Change: Global Temperature [Internet]. 10AD; Available from: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature

  • Dagaut P, Dayma G (2005) The high-pressure reduction of nitric oxide by a natural gas blend. Combust Flame 143:135–137

    Article  Google Scholar 

  • Dagaut P, Luche J, Cathonnet M (2000) The kinetics of C1 to C4 hydrocarbons/NO interactions in relation with reburning. Proc Combust Inst 28:2459–2465

    Article  Google Scholar 

  • Dean AM, Hardy JE, Lyon RK (1982) Kinetics and mechanism of NH3 oxidation. In: Symposium (International) on combustion. Elsevier, pp 97–105

    Google Scholar 

  • Dean AM, Bozzelli JW (2000) Combustion chemistry of nitrogen. In: Gas-phase combustion chemistry. Springer, pp 125–341

    Google Scholar 

  • Deutsch FE (2020) Inventory of US Greenhouse Gas Emissions and Sinks: 1990·PDF file 2020. 4

    Google Scholar 

  • Duan J, Yang Z, Sun B, Chen W, Wang L (2017) Study on the NOx emissions mechanism of an HICE under high load. Int J Hydrogen Energy 42:22027–22035

    Article  Google Scholar 

  • Eckart S, Cai L, Fritsche C, vom Lehn F, Pitsch H, Krause H (2021) Laminar burning velocities, CO, and NOx emissions of premixed polyoxymethylene dimethyl ether flames. Fuel 293:120321

    Article  Google Scholar 

  • Elbaz AM, Wang S, Guiberti TF, Roberts WL (2022) Review on the recent advances on ammonia combustion from the fundamentals to the applications. Fuel Commun 100053

    Google Scholar 

  • Fenimore CP (1971) Formation of nitric oxide in premixed hydrocarbon flames. In: Symposium (international) on combustion. Elsevier, pp 373–380

    Google Scholar 

  • Glarborg P, Miller JA, Ruscic B, Klippenstein SJ (2018) Modeling nitrogen chemistry in combustion. Prog Energy Combust Sci 67:31–68

    Article  Google Scholar 

  • Gregory P (2007) GRI-MECH 3.0. http://www.me.berkeley.edu/gri_mech/

  • Gross CW, Kong SC (2013) Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures. Fuel 103:1069–1079

    Article  Google Scholar 

  • Guide AFT (2013) ANSYS FLUENT Theory Guide. Release 18.2, 15317 (November)

    Google Scholar 

  • Hayakawa A, Goto T, Mimoto R, Kudo T, Kobayashi H (2015) No formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures. Mech Eng J 14–402

    Google Scholar 

  • Hu F, Li P, Li W, Ding C, Guo J, Liu Z (2021) Experimental and kinetic study of NO-reburning by syngas under high CO2 concentration in a jet stirred reactor. Fuel 304:121403

    Article  Google Scholar 

  • Ichikawa A, Hayakawa A, Kitagawa Y, Somarathne KDKA, Kudo T, Kobayashi H (2015) Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. Int J Hydrogen Energy 40:9570–9578

    Article  Google Scholar 

  • Imhoff TB, Gkantonas S, Mastorakos E (2021) Analysing the performance of ammonia powertrains in the marine environment. Energies (basel) 14:7447

    Article  Google Scholar 

  • Jojka J, Ślefarski R (2018) Dimensionally reduced modeling of nitric oxide formation for premixed methane-air flames with ammonia content. Fuel 217:98–105

    Article  Google Scholar 

  • Jonsson M, Yan J (2005) Humidified gas turbines—a review of proposed and implemented cycles. Energy 30:1013–1078

    Article  Google Scholar 

  • Joo JM, Lee S, Kwon OC (2012) Effects of ammonia substitution on combustion stability limits and NOx emissions of premixed hydrogen–air flames. Int J Hydrogen Energy 37:6933–6941

    Article  Google Scholar 

  • Ju R, Wang J, Zhang M, Mu H, Zhang G, Yu J et al (2022) Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma. air premixed swirling flames with rotating gliding arc discharge plasma

    Google Scholar 

  • Kandemir T, Schuster ME, Senyshyn A, Behrens M, Schlögl R (2013) The Haber-Bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions. Angew Chem Int Ed 52:12723–12726

    Article  Google Scholar 

  • Khateeb AA, Guiberti TF, Zhu X, Younes M, Jamal A, Roberts WL (2020) Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames. Int J Hydrogen Energy 45:22008–22018

    Article  Google Scholar 

  • Kikuchi K, Murai R, Hori T, Akamatsu F (2021) Fundamental study on ammonia Low-NOx combustion using two-stage combustion by parallel air jets. Processes 10:23

    Article  Google Scholar 

  • Kobayashi H, Hayakawa A, Somarathne KDKA, Okafor EC (2019) Science and technology of ammonia combustion. Proc Combust Inst 37:109–133

    Article  Google Scholar 

  • Kovaleva M, Hayakawa A, Colson S, Okafor EC, Kudo T, Valera-Medina A et al (2022) Numerical and experimental study of product gas characteristics in premixed ammonia/methane/air laminar flames stabilised in a stagnation flow. Fuel Commun 10:100054

    Article  Google Scholar 

  • Kurata O, Iki N, Inoue T, Matsunuma T, Tsujimura T, Furutani H et al (2019) Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation. Proc Combust Inst 37:4587–4595

    Article  Google Scholar 

  • Kurata O, Iki N, Matsunuma T, Inoue T, Tsujimura T, Furutani H et al (2017) Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations. Proc Combust Inst 36:3351–3359

    Article  Google Scholar 

  • Lee T, Guahk YT, Kim N, Lee H, Lee MJ (2023) Stability and emission characteristics of ammonia-air flames in a lean-lean fuel staging tangential injection combustor. Combust Flame 248:112593

    Article  Google Scholar 

  • Lee JH, Kim JH, Park JH, Kwon OC (2010) Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production. Int J Hydrogen Energy 35:1054–1064

    Article  Google Scholar 

  • Lhuillier C, Brequigny P, Contino F, Mounaïm-Rousselle C (2020) Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions. Fuel 269:117448

    Article  Google Scholar 

  • Li X, Chu X, Ma Z, ** Y, Wang X, ** Z et al (2023b) An experimental and kinetic modeling study on the ignition characteristics of ammonia/ethanol at high temperatures. Fuel 352:129074

    Article  Google Scholar 

  • Li J, Huang H, Kobayashi N, He Z, Nagai Y (2014) Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation. Int J Energy Res 38:1214–1223

    Article  Google Scholar 

  • Li R, Konnov AA, He G, Qin F, Zhang D (2019a) Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures. Fuel 257:116059

    Article  Google Scholar 

  • Li S, Zhang S, Zhou H, Ren Z (2019b) Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors. Fuel 237:50–59

    Article  Google Scholar 

  • Li M, Zhu D, He X, Moshammer K, Fernandes R, Shu B (2023a) Experimental and kinetic modeling study on auto-ignition properties of ammonia/ethanol blends at intermediate temperatures and high pressures. Proc Combust Inst 39:511–519

    Article  Google Scholar 

  • Lieuwen TC, Yang V (2013) Gas turbine emissions. Cambridge University Press

    Google Scholar 

  • Lindstedt RP, Lockwood FC, Selim MA (1994) Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation. Combust Sci Technol 99:253–276

    Article  Google Scholar 

  • Liu Y, Cheng X, Li Y, Qiu L, Wang X, Xu Y (2021) Effects of ammonia addition on soot formation in ethylene laminar diffusion flames. Fuel 292:120416

    Article  Google Scholar 

  • Luo QH, Hu JB, Sun BG, Liu FS, Wang X, Li C et al (2019) Experimental investigation of combustion characteristics and NOx emission of a turbocharged hydrogen internal combustion engine. Int J Hydrogen Energy 44:5573–5584

    Google Scholar 

  • Lyon RK (1975) Method for the reduction of the concentration of NO in combustion effluents using ammonia

    Google Scholar 

  • Lyon R (2001) The chemistry of the thermal DeNOx process: a review of the technology’s possible application to control of NOx from diesel engines

    Google Scholar 

  • Maab MPG, Bathaei S, Kim M, Esfahani JA, Kim KC (2023) Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation. J Therm Anal Calorim 148:8347–8364

    Article  Google Scholar 

  • MacFarlane DR, Cherepanov PV, Choi J, Suryanto BHR, Hodgetts RY, Bakker JM et al (2020) A roadmap to the ammonia economy. Joule 4:1186–1205

    Article  Google Scholar 

  • Mashruk S, Kovaleva M, Tung Chong C, Hayakawa A, Okafor EC, Valera-Medina A (2021b) Nitrogen oxides as a by-product of ammonia/hydrogen combustion regimes. Chem Eng Trans 89:613–618

    Google Scholar 

  • Mashruk S, Okafor EC, Kovaleva M, Alnasif A, Pugh D, Hayakawa A et al (2022) Evolution of N2O production at lean combustion condition in NH3/H2/air premixed swirling flames. Combust Flame 244:112299

    Article  Google Scholar 

  • Mashruk S, **ao H, Valera-Medina A (2021a) Rich-Quench-Lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems. Int J Hydrogen Energy 46:4472–4484

    Article  Google Scholar 

  • Mashruk S, **ao H, Pugh D, Chiong MC, Runyon J, Goktepe B et al (2021b) Numerical analysis on the evolution of NH2 in ammonia/hydrogen swirling flames and detailed sensitivity analysis under elevated conditions. Combust Sci Technol 1–28

    Google Scholar 

  • Mashruk S, Vigueras-Zuniga MO, Tejeda-del-Cueto ME, **ao H, Yu C, Maas U et al (2022) Combustion features of CH4/NH3/H2 ternary blends. Int J Hydrogen Energy

    Google Scholar 

  • Mendiara T, Glarborg P (2009) Ammonia chemistry in oxy-fuel combustion of methane. Combust Flame 156:1937–1949

    Article  Google Scholar 

  • Meng X, Zhang M, Zhao C, Tian H, Tian J, Long W et al (2022) Study of combustion and NO chemical reaction mechanism in ammonia blended with DME. Fuel 319:123832

    Article  Google Scholar 

  • Metkemeijer R, Achard P (1994) Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour. J Power Sour 49:271–282

    Article  Google Scholar 

  • Miller JA, Bowman CT (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15:287–338

    Article  Google Scholar 

  • Miller JA, Pilling MJ, Troe J (2005) Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc Combust Inst 30:43–88

    Article  Google Scholar 

  • Miller JA, Smooke MD, Green RM, Kee RJ (1983) Kinetic modeling of the oxidation of ammonia in flames. Combust Sci Technol 34:149–176

    Article  Google Scholar 

  • Morlanés N, Katikaneni SP, Paglieri SN, Harale A, Solami B, Sarathy SM et al (2021) A technological roadmap to the ammonia energy economy: current state and missing technologies. Chem Eng J 408:127310

    Article  Google Scholar 

  • Myerson AL (1975) The reduction of nitric oxide in simulated combustion effluents by hydrocarbon-oxygen mixtures. In: Symposium (International) on combustion. Elsevier, pp 1085–1092

    Google Scholar 

  • Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A et al (2018) Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combust Flame 187:185–198

    Article  Google Scholar 

  • Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A et al (2019a) Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combust Flame 204:162–175

    Article  Google Scholar 

  • Okafor EC, Somarathne KDKA, Hayakawa A, Kudo T, Kurata O, Iki N et al (2019b) Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine. Proc Combust Inst 37:4597–4606

    Article  Google Scholar 

  • Okafor EC, Somarathne KDKA, Ratthanan R, Hayakawa A, Kudo T, Kurata O et al (2020) Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combust Flame 211:406–416

    Article  Google Scholar 

  • Okafor EC, Tsukamoto M, Hayakawa A, Somarathne KDKA, Kudo T, Tsujimura T et al (2021a) Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall. Proc Combust Inst 38:5139–5146

    Article  Google Scholar 

  • Okafor EC, Yamashita H, Hayakawa A, Somarathne KDKA, Kudo T, Tsujimura T et al (2021b) Flame stability and emissions characteristics of liquid ammonia spray co-fired with methane in a single stage swirl combustor. Fuel 287:119433

    Article  Google Scholar 

  • Okafor EC, Kurata O, Yamashita H, Inoue T, Tsujimura T, Iki N et al (2021) Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control. Appl Energy Combust Sci 7:100038

    Google Scholar 

  • Pelé R, Brequigny P, Bellettre J, Mounaïm-Rousselle C (2022) Performances and pollutant emissions of spark ignition engine using direct injection for blends of ethanol/ammonia and pure ammonia. Int J Engine Res 14680874231170660.

    Google Scholar 

  • Pugh D, Bowen P, Valera-Medina A, Giles A, Runyon J, Marsh R (2019) Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame. Proc Combust Inst 37:5401–5409

    Article  Google Scholar 

  • Pugh D, Runyon J, Bowen P, Giles A, Valera-Medina A, Marsh R et al (2021) An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions. Proc Combust Inst 38:6451–6459

    Article  Google Scholar 

  • Pugh D, Valera-Medina A, Bowen P, Giles A, Goktepe B, Runyon J et al (2021) Emissions performance of staged premixed and diffusion combustor concepts for an NH3/air flame with and without reactant humidification. J Eng Gas Turbine Power 143

    Google Scholar 

  • Rahman Z, Wang X, Mikulcic H, Zhou S, Zhang J, Vujanovic M et al (2022) Numerical assessment of NOx evolution in ammonia oxidation and its control by reburning in pressurized oxy-combustion. J Energy Inst 100:89–98

    Google Scholar 

  • Ramos CF, Rocha RC, Oliveira PMR, Costa M, Bai XS (2019) Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames. Fuel 254:115693

    Article  Google Scholar 

  • Rao G, Dong M, Nie W, Lin X, Liang Y, Lu J (2022) Experimental and numerical study of the nitrogen transformation mechanism in the reburning zone. Energy Fuels 36:15134–15144

    Article  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (1979) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 2009(326):123–125

    Google Scholar 

  • Raza H, Woo S, Kim H (2022) Investigation of an ammonium carbamate–based SCR system for NOx reduction in diesel engines under transient conditions. Energy 251:123918

    Article  Google Scholar 

  • Ren F, Cheng X, Gao Z, Huang Z, Zhu L (2022) Effects of NH3 addition on polycyclic aromatic hydrocarbon and soot formation in C2H4 co-flow diffusion flames. Combust Flame 241:111958

    Article  Google Scholar 

  • da Rocha RC, Costa M, Bai XS (2019) Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission. Fuel 246:24–33

    Article  Google Scholar 

  • Rocha RC, Costa M, Bai XS (2021) Combustion and emission characteristics of ammonia under conditions relevant to modern gas turbines. Combust Sci Technol 193:2514–2533

    Article  Google Scholar 

  • Rocha RC, Zhong S, Xu L, Bai XS, Costa M, Cai X et al (2021) Structure and laminar flame speed of an ammonia/methane/air premixed flame under varying pressure and equivalence ratio. Energy Fuels [Internet] 35:7179–7192. Available from: https://doi.org/10.1021/acs.energyfuels.0c03520

  • Ronan P, Pierre B, Christine MR, Guillaume D, Fabien H (2022) Laminar flame speed of ethanol/ammonia blends–an experimental and kinetic study. Fuel Commun 10:100052

    Article  Google Scholar 

  • Smoot L, Hill SC, Xu H (1998) NOx control through reburning. Prog Energy Combust Sci 24:385–408

    Article  Google Scholar 

  • Somarathne KDKA, Hatakeyama S, Hayakawa A, Kobayashi H (2017) Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure. Int J Hydrogen Energy 42:27388–27399

    Article  Google Scholar 

  • Somarathne KDKA, Okafor EC, Sugawara D, Hayakawa A, Kobayashi H (2021) Effects of OH concentration and temperature on NO emission characteristics of turbulent non-premixed CH4/NH3/air flames in a two-stage gas turbine like combustor at high pressure. Proc Combust Inst 38:5163–5170

    Article  Google Scholar 

  • Sorrentino G, Sabia P, Bozza P, Ragucci R, de Joannon M (2019) Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions. Appl Energy 254:113676

    Article  Google Scholar 

  • Stagni A, Cavallotti C, Arunthanayothin S, Song Y, Herbinet O, Battin-Leclerc F et al (2020) An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia. React Chem Eng 5:696–711

    Article  Google Scholar 

  • Steinmetz SA, Ahmed HA, Boyette WR, Dunn MJ, Roberts WL, Masri AR (2022) Effects of ammonia and hydrogen on the sooting characteristics of laminar coflow flames of ethylene and methane. Fuel 307:121914

    Article  Google Scholar 

  • Sun X, Li M, Li J, Duan X, Wang C, Luo W et al (2023) Nitrogen oxides and ammonia removal analysis based on three-dimensional ammonia-diesel dual fuel engine coupled with one-dimensional SCR model. Energies (basel) 16:908

    Article  Google Scholar 

  • Sun Y, Zhao D, Cai T (2022) Dilution effect on thermal performances and NOx emission characteristics of an ammonia-oxygen micro-thermophotovoltaic system. Therm Sci Eng Prog 34:101401

    Article  Google Scholar 

  • The Science of Climate Change | The world is warming | Wisconsin DNR [Internet]. 10AD; Available from: https://dnr.wisconsin.gov/climatechange/science

  • Tian Z, Li Y, Zhang L, Glarborg P, Qi F (2009) An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combust Flame 156:1413–1426

    Article  Google Scholar 

  • Valera-Medina A, Marsh R, Runyon J, Pugh D, Beasley P, Hughes T et al (2017a) Ammonia–methane combustion in tangential swirl burners for gas turbine power generation. Appl Energy 185:1362–1371

    Article  Google Scholar 

  • Valera-Medina A, Morris S, Runyon J, Pugh DG, Marsh R, Beasley P et al (2015) Ammonia, methane and hydrogen for gas turbines. Energy Procedia 75:118–123

    Article  Google Scholar 

  • Valera-Medina A, Pugh DG, Marsh P, Bulat G, Bowen P (2017b) Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors. Int J Hydrogen Energy 42:24495–24503

    Article  Google Scholar 

  • Valera-Medina A, **ao H, Owen-Jones M, David WIF, Bowen PJ (2018) Ammonia for power. Prog Energy Combust Sci 69:63–102

    Article  Google Scholar 

  • Westlye FR, Ivarsson A, Schramm J (2013) Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine. Fuel 111:239–247

    Article  Google Scholar 

  • Woo M, Choi BC (2021) Numerical study on fuel-NO formation characteristics of ammonia-added methane fuel in laminar non-premixed flames with oxygen/carbon dioxide oxidizer. Energy 226:120365

    Article  Google Scholar 

  • Woo M, Choi BC, Ghoniem AF (2016) Experimental and numerical studies on NOx emission characteristics in laminar non-premixed jet flames of ammonia-containing methane fuel with oxygen/nitrogen oxidizer. Energy 114:961–972

    Article  Google Scholar 

  • Wuebbles DJ (1979) Nitrous oxide: no laughing matter. Science 2009(326):56–57

    Google Scholar 

  • **ao H, Lai S, Valera-Medina A, Li J, Liu J, Fu H (2020) Study on counterflow premixed flames using high concentration ammonia mixed with methane. Fuel 275:117902

    Article  Google Scholar 

  • **ao H, Valera-Medina A, Bowen PJ (2017b) Study on premixed combustion characteristics of co-firing ammonia/methane fuels. Energy 140:125–135

    Article  Google Scholar 

  • **ao H, Valera-Medina A, Bowen PJ (2017c) Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions. Energy Fuels 31:8631–8642

    Article  Google Scholar 

  • **ao H, Valera-Medina A, Marsh R, Bowen PJ (2017a) Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions. Fuel 196:344–351

    Article  Google Scholar 

  • **ao H, Valera-Medina A (2017) Chemical kinetic mechanism study on premixed combustion of ammonia/hydrogen fuels for gas turbine use. J Eng Gas Turbine Power 139

    Google Scholar 

  • Yan Z, Yang Y, Li Q, Yan Y, Tian Z, Song C et al (2023) Study on effects of NH3 and/or H2 addition on the characteristics of soot formation and gas emissions in a laminar ethylene diffusion flame. Fuel Process Technol 242:107633

    Article  Google Scholar 

  • Yang R, Sun X, Liu Z, Zhang Y, Fu J (2021) A numerical analysis of the effects of equivalence ratio measurement accuracy on the engine efficiency and emissions at varied compression ratios. Processes 9:1413

    Article  Google Scholar 

  • Yang Y, Huang Q, Sun J, Ma P, Li S (2022) Reducing NOx emission of swirl-stabilized ammonia/methane tubular flames through a fuel-oxidizer mixing strategy. Energy Fuels [Internet] 36:2277–2287. Available from: https://doi.org/10.1021/acs.energyfuels.1c04004

  • Yapicioglu A, Dincer I (2019) A review on clean ammonia as a potential fuel for power generators. Renew Sustain Energy Rev 103:96–108

    Article  Google Scholar 

  • Yousefi A, Guo H, Dev S, Lafrance S, Liko B (2022a) A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine. Fuel 316:123412

    Article  Google Scholar 

  • Yousefi A, Guo H, Dev S, Liko B, Lafrance S (2022b) Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine. Fuel 314:122723

    Article  Google Scholar 

  • Zajemska M, Poskart A, Musiał D (2015) The kinetics of nitrogen oxides formation in the flame gas. Econ Environ Stud (E&ES) 15:445–460

    Google Scholar 

  • Zamfirescu C, Dincer Ijj (2008) Using ammonia as a sustainable fuel. J Power Sour 185:459–465

    Google Scholar 

  • Zeldvich YB (1946) The oxidation of nitrogen in combustion and explosions. J Acta Physicochimica 21:577

    Google Scholar 

  • Zhang M, An Z, Wang L, Wei X, Jianayihan B, Wang J et al (2021b) The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor. Int J Hydrogen Energy 46:21013–21025

    Article  Google Scholar 

  • Zhang M, An Z, Wei X, Wang J, Huang Z, Tan H (2021a) Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor. Fuel 291:120135

    Article  Google Scholar 

  • Zhang Q, Zhou Z, Shan S, Cai X, Yang W (2022) Chemical effect of water addition on the ammonia combustion reaction. Therm Sci Eng Prog 32:101318

    Article  Google Scholar 

  • Zhao J, Wang Q, Yu L, Wu L (2016) Influence of the biogas reburning for reducing nitric oxide emissions in an alundum-tube reactor. Atmos Environ 132:290–295

    Article  Google Scholar 

  • Zhou M, Yan F, Ma L, Jiang P, Wang Y, Chung SH (2022) Chemical speciation and soot measurements in laminar counterflow diffusion flames of ethylene and ammonia mixtures. Fuel 308:122003

    Article  Google Scholar 

  • Zhu X, Khateeb AA, Guiberti TF, Roberts WL (2021) NO and OH* emission characteristics of very-lean to stoichiometric ammonia–hydrogen–air swirl flames. Proc Combust Inst 38:5155–5162

    Google Scholar 

Download references

Acknowledgements

All of the authors acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for the Grant Projects Ocean-REFuel (EP/W005131/1), SAFE (EP/T009314/1), and thank the support from the EU-funded project FLEXnCONFU (884157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mashruk, S., Shi, H., Zitouni, SE., Valera-Medina, A. (2024). Nitrogen Oxide Emissions in Ammonia Combustion. In: Kumar, S., Agarwal, A.K., Khandelwal, B., Singh, P. (eds) Ammonia and Hydrogen for Green Energy Transition. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-0507-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0507-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0506-1

  • Online ISBN: 978-981-97-0507-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation