Recent Developments in Spectral Theory for Non-self-adjoint Hamiltonians

  • Conference paper
  • First Online:
Mathematical Physics and Its Interactions (ICMPI 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 451))

Included in the following conference series:

  • 19 Accesses

Abstract

The objective of this survey is to collect and elaborate on different tools, both well-established and more recent ones, which have been developed in the last decades to investigate spectral properties of non-self-adjoint operators of the form \(H=H_0+V\). More specifically, we will show how Hardy-type and Sobolev inequalities, together with Virial theorems and Birman-Schwinger principles enter into play in the analysis of the spectrum of these Hamiltonians.

Dedicated to Prof. Tohru Ozawa for his birthday, with deep gratitude for all he has done and sincere friendship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In classical quantum mechanics the notion of Hamiltonian is customarily connected to a purely self-adjoint setting (it is the observable which represents the total energy of the system). Nevertheless, it turned out that adopting a less fundamental approach one can provide a relaxation of the notion which is meaningful also for non-self-adjoint operators (see the introduction in [48] and references therein.).

  2. 2.

    Actually, this is just one of the many possible definition for the essential spectrum, which are all equivalent only in the self-adjoint setting. In particular, the one we are using here is \(\sigma _{e_3}\) in the monograph [31] by Edmunds and Evans.

References

  1. A.A. Abramov, A. Aslanyan, E.B. Davies, Bounds on complex eigenvalues and resonances. J. Phys. A 34(1), 57–72 (2001)

    Article  MathSciNet  Google Scholar 

  2. S. Albeverio, On bound states in the continuum of \(N\)-body systems and the virial theorem. Ann. Phys. 71, 167–276 (1972)

    Article  MathSciNet  Google Scholar 

  3. W.O. Amrein, Hilbert Space Methods in Quantum Mechanics (EPFL Press, 2009)

    Google Scholar 

  4. S. Avramska-Lukarska, D. Hundertmark, H. Kovarik. Absence of positive eigenvalues of magnetic Schrödinger operators. Calc. Var. 62(63) (2023)

    Google Scholar 

  5. M.V. Birman, On the spectrum of singular boundary-value problems. Mat. Sb. (N.S.) 55(97), 125–174 (1961)

    Google Scholar 

  6. S. Bögli, Schrödinger operator with non-zero accumulation points of complex eigenvalues. Comm. Math. Phys. 352(2), 629–639 (2017)

    Article  MathSciNet  Google Scholar 

  7. S. Bögli, J.-C. Cuenin, Counterexample to the Laptev-Safronov conjecture. Comm. Math. Phys. 398, 1349–1370 (2023)

    Article  MathSciNet  Google Scholar 

  8. N. Boussaid, P. D’Ancona, L. Fanelli, Virial identity and weak dispersion for the magnetic Dirac equation. J. Math. Pures Appl. (9), 95(2), 137–150 (2011)

    Google Scholar 

  9. F. Cacciafesta. Virial identity and dispersive estimates for the \(n\)-dimensional Dirac equation. J. Math. Sci. Univ. Tokyo 18(4), 441–463 (2011, 2012)

    Google Scholar 

  10. E.A. Carlen, R.L. Frank, E.H. Lieb, Stability estimates for the lowest eigenvalue of a Schrödinger operator. Geom. Funct. Anal. 24(1), 63–84 (2014)

    Article  MathSciNet  Google Scholar 

  11. B. Cassano, L. Cossetti, L. Fanelli, Eigenvalue bounds and spectral stability of Lamé operators with complex potentials. J. Differ. Equ. 298, 528–559 (2021)

    Article  Google Scholar 

  12. B. Cassano, L. Cossetti, L. Fanelli, Spectral enclosures for the damped elastic wave equation. Math. Eng. 4(6), 1–10 (2022)

    Article  MathSciNet  Google Scholar 

  13. B. Cassano, O.O. Ibrogimov, D. Krejčiřík, F. Štampach, Location of eigenvalues of non-self-adjoint discrete Dirac operators. Ann. Henri Poincaré 21(7), 2193–2217 (2020)

    Article  MathSciNet  Google Scholar 

  14. B. Cassano, F. Pizzichillo, L. Vega, A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator. Rev. Mat. Complut. 33(1), 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  15. L. Cossetti, Uniform resolvent estimates and absence of eigenvalues for Lamé operators with complex potentials. J. Math. Anal. Appl. 455(1), 336–360 (2017)

    Article  MathSciNet  Google Scholar 

  16. L. Cossetti. Bounds on eigenvalues of perturbed Lamé operators with complex potentials. Math. Eng. 4(5), Paper No. 037, 29 (2022)

    Google Scholar 

  17. L. Cossetti, L. Fanelli, D. Krejčiřík, Absence of eigenvalues of Dirac and Pauli Hamiltonians via the method of multipliers. Comm. Math. Phys. 379(2), 633–691 (2020)

    Article  MathSciNet  Google Scholar 

  18. L. Cossetti, D. Krejčiřík, Absence of eigenvalues of non-self-adjoint Robin Laplacians on the half-space. Proc. Lond. Math. Soc. 121(3), 584–616 (2020)

    Article  MathSciNet  Google Scholar 

  19. J.-C. Cuenin, Estimates on complex eigenvalues for Dirac operators on the half-line. Integral Equ. Oper. Theory 79(3), 377–388 (2014)

    Article  MathSciNet  Google Scholar 

  20. J.-C. Cuenin, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials. J. Funct. Anal. 272(7), 2987–3018 (2017)

    Article  MathSciNet  Google Scholar 

  21. J.-C. Cuenin, Eigenvalue estimates for bilayer graphene. Ann. Henri Poincaré 20(5), 1501–1516 (2019)

    Article  MathSciNet  Google Scholar 

  22. J.-C. Cuenin, A. Laptev, C. Tretter, Eigenvalue estimates for non-selfadjoint Dirac operators on the real line. Ann. Henri Poincaré 15(4), 707–736 (2014)

    Article  MathSciNet  Google Scholar 

  23. J.-C. Cuenin, C. Tretter, Non-symmetric perturbations of self-adjoint operators. J. Math. Anal. Appl. 441(1), 235–258 (2016)

    Article  MathSciNet  Google Scholar 

  24. M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. (2), 106(1), 93–100 (1977)

    Google Scholar 

  25. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, study (Texts and Monographs in Physics (Springer, Berlin, 1987)

    Google Scholar 

  26. P. D’Ancona, L. Fanelli, Decay estimates for the wave and Dirac equations with a magnetic potential. Comm. Pure Appl. Math. 60(3), 357–392 (2007)

    Article  MathSciNet  Google Scholar 

  27. P. D’Ancona, L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials. Comm. Partial Differ. Equ. 33(6), 1082–1112 (2008)

    Article  MathSciNet  Google Scholar 

  28. C. Dubuisson, On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator. Integral Equ. Oper. Theory 78(2), 249–269 (2014)

    Article  MathSciNet  Google Scholar 

  29. P. D’Ancona, L. Fanelli, D. Krejčiřík, N.M. Schiavone, Localization of eigenvalues for non-self-adjoint Dirac and Klein-Gordon operators. Nonlinear Anal. 214, 112565 (2022)

    Article  MathSciNet  Google Scholar 

  30. P. D’Ancona, L. Fanelli, N.M. Schiavone, Eigenvalue bounds for non-selfadjoint Dirac operators. Math. Ann. 383, 621–644 (2022)

    Google Scholar 

  31. D.E. Edmunds, W.D. Evans, Spectral Theory and Differential Operators Oxford Mathematical Monographs (Oxford University Press, Oxford, 2018)

    Book  Google Scholar 

  32. A. Enblom, Estimates for eigenvalues of Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 106(2), 197–220 (2016)

    Article  MathSciNet  Google Scholar 

  33. M.B. Erdoğan, M. Goldberg, W.R. Green, Limiting absorption principle and Strichartz estimates for Dirac operators in two and higher dimensions. Comm. Math. Phys. 367(1), 241–263 (2019)

    Article  MathSciNet  Google Scholar 

  34. D.M. Èĭdus. On the principle of limiting absorption. Mat. Sb. (N.S.) 57(99), 13–44 (1962)

    Google Scholar 

  35. L. Fanelli, D. Krejčiřík, Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators. Lett. Math. Phys. 109(7), 1473–1485 (2019)

    Article  MathSciNet  Google Scholar 

  36. L. Fanelli, D. Krejčiřík, L. Vega, Absence of eigenvalues of two-dimensional magnetic Schrödinger operators. J. Funct. Anal. 275(9), 2453–2472 (2018)

    Article  MathSciNet  Google Scholar 

  37. L. Fanelli, D. Krejčiřík, L. Vega, Spectral stability of Schrödinger operators with subordinated complex potentials. J. Spectr. Theory 8(2), 575–604 (2018)

    Article  MathSciNet  Google Scholar 

  38. R.L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)

    Article  MathSciNet  Google Scholar 

  39. R.L. Frank, B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory 7(3), 633–658 (2017)

    Article  MathSciNet  Google Scholar 

  40. M. Hansmann, D. Krejčiřík, The abstract Birman-Schwinger principle and spectral stability. JAMA 148, 361–398 (2022)

    Article  MathSciNet  Google Scholar 

  41. O.O. Ibrogimov, D. Krejčiřík, A. Laptev, Sharp bounds for eigenvalues of biharmonic operators with complex potentials in low dimensions. Math. Nachr. 294(7), 1333–1349 (2021)

    Article  MathSciNet  Google Scholar 

  42. O.O. Ibrogimov, F. Štampach, Spectral enclosures for non-self-adjoint discrete Schrödinger operators. Integr. Eqn. Oper. Theory 91(6), 1–15 (2019)

    Google Scholar 

  43. T. Kato, Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)

    Google Scholar 

  44. J.B. Keller, Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation. J. Math. Phys. 2, 262–266 (1961)

    Article  Google Scholar 

  45. C.E. Kenig, A. Ruiz, C.D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    Article  MathSciNet  Google Scholar 

  46. R. Konno, S.T. Kuroda, On the finiteness of perturbed eigenvalues. J. Fac. Sci. Univ. Tokyo Sect. I(13), 55–63 (1966)

    MathSciNet  Google Scholar 

  47. D. Krejčiřík, Geometrical aspects of spectral theory, http://nsa.fjfi.cvut.cz/david/

  48. D. Krejčiřík, Mathematical aspects of quantum mechanics with non-self-adjoint operators, http://nsa.fjfi.cvut.cz/david/

  49. D. Krejčiřík, A. Laptev, F. Stampach, Spectral enclosures and stability for non-self-adjoint discrete Schrödinger operators on the half-line. Bull. London Math. Soc. 54, 2379–2403 (2022)

    Article  MathSciNet  Google Scholar 

  50. D. Krejčiřík, P. Siegl, Elements of spectral theory without the spectral theorem, in Non-selfadjoint Operators in Quantum Physics: Mathematical Aspects, ed. by F. Bagarello, J.-P. Gazeau, F.H. Szafraniec, M. Znojil (Wiley-Interscience, 2015), p. 432

    Google Scholar 

  51. A. Laptev, O. Safronov, Eigenvalue estimates for Schrödinger operators with complex potentials. Comm. Math. Phys. 292(1), 29–54 (2009)

    Article  MathSciNet  Google Scholar 

  52. E.H. Lieb, The number of bound states of one-body Schroedinger operators and the Weyl problem, in Geometry of the Laplace Operator (Proceedings of Symposia in Pure Mathematics, University. Hawaii, Honolulu, Hawaii, 1979), Proceedings of Symposia in Pure Mathematics, vol. XXXVI (American Mathematical Society, Providence, 1980), pp. 241–252

    Google Scholar 

  53. E.H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, 2nd end. (American Mathematical Society, Providence, 2001)

    Google Scholar 

  54. E.H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  55. E.H. Lieb, W.E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in The Stability of Matter: From Atoms to Stars (Springer, 1997), pp. 203–237

    Google Scholar 

  56. H. Mizutani, N.M. Schiavone, Spectral enclosures for Dirac operators perturbed by rigid potentials. Rev. Math. Phys. 34(08), 2250023 (2022)

    Article  MathSciNet  Google Scholar 

  57. E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators. Comm. Math. Phys. 78(3), 391–408 (1980/81)

    Google Scholar 

  58. M. Reed, B. Simon, Methods of Modern Mathematical Physics IV. Analysis of Operators (Academic [Harcourt Brace Jovanovich, Publishers], New York, 1978)

    Google Scholar 

  59. G.V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators. Izv. Vysš. Učebn. Zaved. Matematika 1(164), 75–86 (1976)

    MathSciNet  Google Scholar 

  60. O. Safronov, A. Laptev, F. Ferrulli, Eigenvalues of the bilayer graphene operator with a complex valued potential. Anal. Math. Phys. 9(3), 1535–1546 (2019)

    Article  MathSciNet  Google Scholar 

  61. J. Schwinger, On the bound states of a given potential. Proc. Nat. Acad. Sci. U.S.A. 47, 122–129 (1961)

    Article  MathSciNet  Google Scholar 

  62. B. Thaller, The Dirac Equation, Texts and Monographs in Physics (Springer, Berlin, 1992)

    Google Scholar 

  63. T. Weidl, On the Lieb-Thirring constants \(L_{\gamma,1}\) for \(\gamma \ge 1/2\). Comm. Math. Phys. 178(1), 135–146 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of the first author (L.C.) is Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 258734477 - SFB 1173. The third author (N.M.S.) is supported by the EXPRO grant No. 20-17749X of the Czech Science Foundation. He is also member of the Gruppo Nazionale per L’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cossetti, L., Fanelli, L., Schiavone, N.M. (2024). Recent Developments in Spectral Theory for Non-self-adjoint Hamiltonians. In: Machihara, S. (eds) Mathematical Physics and Its Interactions. ICMPI 2021. Springer Proceedings in Mathematics & Statistics, vol 451. Springer, Singapore. https://doi.org/10.1007/978-981-97-0364-7_8

Download citation

Publish with us

Policies and ethics

Navigation