Chladni Plate and Chladni Patterns—A Research Review of Theory, Modelling, Simulation and Engineering Applications

  • Conference paper
  • First Online:
Artificial Intelligence and Sustainable Computing (ICSISCET 2023)

Abstract

The paper reviews the Chladni plate and Chladni pattern’s-related major research work. The literature reviewed is mainly focused on major and important areas. One of them is Chladni plate experiments and analysis. Other areas considered are Chladni plate and its applications in different fields, mathematical models, analysis and simulation of Chladni patterns. The major mathematical and simulation tools and techniques considered are Finite Element Analysis (FEA), Wave Equations, Numerical methods, etc. Under experimentation techniques the some of the techniques covered are of non-contact type of vibration measurement, including Laser Doppler Vibrometry, electronic speckle-pattern interferometry (ESPI), etc. This paper tries to review and present the information and methods for Chladni plate-related research. It not only covers the overview of the theory behind the phenomenon of the Chladni patterns developed on different shapes of the plates but also Chladni plate’s different applications including Chladni patterns, modal analysis, Cymatics, micromanipulation, textile resonators, fault diagnosis, machine learning techniques, non-contact vibration measurement techniques, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ullmann D (2007) Life and work of EFF Chladni. Eur Phys J Special Topics 145:25–32. https://doi.org/10.1140/epjst/e2007-00145-4

    Article  Google Scholar 

  2. Stockmann H-J (2007) Chladni meets Napoleon. Eur Phys J Special Topics 145:15–23. https://doi.org/10.1140/epjst/e2007-00144-5

    Article  Google Scholar 

  3. Colwell RC (1932) The vibrations of quartz plates. Proc Inst Radio Eng 20(5):808–812

    Google Scholar 

  4. Colwell RC (1933) Diagonal symmetry in chladni plates. J Franklin Inst 215(2):169–177

    Article  Google Scholar 

  5. Colwell RC, Bryant EA (1934) The magnetostrictive oscillation of chladni plates. J Franklin Inst 218(6):739–748

    Article  Google Scholar 

  6. Colwell RC, Hill LR (1937) The magnetostrictive oscillation of quartz plates. J Appl Phys 8(1):68–70

    Article  Google Scholar 

  7. Stewart JK, Colwell RC (1939) The calculation of Chladni patterns. J Acoust Soc Am 11(1):147–151

    Article  Google Scholar 

  8. Warburton GB (1954) The vibration of rectangular plates. Proc Inst Mech Eng 168(1):371–384

    Article  MathSciNet  Google Scholar 

  9. Jensen HC (1955) Production of Chladni figures on vibrating plates using continuous excitation. Am J Phys 23(8):503–505

    Article  Google Scholar 

  10. Waller MD (1956) Interpreting Chladni figures. Physics Department, Royal Free Hospital of Medicine, London

    Google Scholar 

  11. Smalley IJ (1963) Symmetry of snow crystals, Northampton College of Advanced Technology. E.C.I, London

    Google Scholar 

  12. Langley AJ, Taylor PH (1979) Chladni patterns in random vibration. Int J Eng Sci 17(9):1039–1047

    Article  Google Scholar 

  13. Sansalone M, Carino NJ, Hsu NN (1987) A finite element study of transient wave propagation in plates. J Res Natl Bur Stand 92(4):267

    Article  Google Scholar 

  14. Bardell NS (1994) Chladni figures for completely free parallelogram plates: an analytical study. J Sound Vib 174(5):655–676

    Article  Google Scholar 

  15. Yuen MMF (1985) A numerical study of the eigenparameters of a damaged cantilever. J Sound Vib 103(3):301–310

    Article  Google Scholar 

  16. Pandey AK, Biswas M, Samman MM (1991) Damage detection from changes in curvature mode shapes. J Sound Vib 145(2):321–332

    Article  Google Scholar 

  17. Leissa AW (1969) Vibration of plates, vol 160. Scientific and Technical Information Division, National Aeronautics and Space Administration

    Google Scholar 

  18. Elishakoff I (2000) Axisymmetric vibration of inhomogeneous clamped circular plates: an unusual closed-form solution. J Sound Vib 4(233):723–734

    Article  Google Scholar 

  19. Storch JA, Elishakoff I (2004) Apparently first closed-form solutions of inhomogeneous circular plates in 200 years after Chladni. J Sound Vib 276(3–5):1108–1114

    Article  MathSciNet  Google Scholar 

  20. Papkov SO (2015) Vibrations of a rectangular orthotropic plate with free edges: analysis and solution of an infinite system. Acoust Phys 61(2):136–143

    Article  Google Scholar 

  21. Arango J, Reyes C (2016) Stochastic models for chladni figures. Proc Edinb Math Soc 59(2):287–300

    Article  MathSciNet  Google Scholar 

  22. Nastos CV, Thesodosiou TC, Rekatsinas CS, Saravanos DA (2018) Wave propagation analysis of laminated composite plates using Daubechies Wavelet elements

    Google Scholar 

  23. Nguyen DT, Li L, Ji H (2021) Stable and accurate numerical methods for generalized Kirchhoff-Love plates. J Eng Math 130:1–26

    Article  MathSciNet  Google Scholar 

  24. Pereira VS, Moraes EC, Dos Santos JMC (2009) Analysis of in-plane wave propagation in thin plates by energy spectral element method

    Google Scholar 

  25. Molin NE, Lindgren L-E, Jansson EV (1988) Parameters of violin plates and their influence on the plate modes. Acoust Soc Am 83(1):281–291

    Article  Google Scholar 

  26. Gough C (2007) The violin: Chladni patterns, plates, shells and sounds. Eur Phys J Special Topics 145:77–101. https://doi.org/10.1140/epjst/e2007-00149-0

    Article  Google Scholar 

  27. Okuda A, Ono T (2008) Bracing effect in a guitar top board by vibration experiment and modal analysis. Acoust Soc Japan 29(1):2008

    Google Scholar 

  28. Ono T, Takahashi I, Takasu Y, Miura Y, Watanabe U (2009) Acoustic characteristics of Wadaiko (traditional Japanese drum) with wood plastic shell. Acoust Soc Japan. https://doi.org/10.1250/ast.30.410

    Article  Google Scholar 

  29. Curtu I, Stanciu MD, Cretu N, Rosca I (2009) Modal analysis of different types of classical guitar bodies. In: Proceedings of the 10th WSEAS International Conference on Acoustics and Music: Theory and applications

    Google Scholar 

  30. Danihelova A (2009) Modes vibration of bodies and musical instruments. Physics Teaching in Engineering Education, PTEE 2009, Institute of Physics, Wroclaw University of Technology, Wroclaw

    Google Scholar 

  31. Worland R (2011) Chladni patterns on drumheads: a “physics of music” experiment. Phys Teacher 49(1):24–27

    Article  Google Scholar 

  32. Munoth Y, Kumar NV, Vishal V, Pavithra LK, Srinivasan R (2019) Pattern analysis on cymatics-based images for pronunciation. In: 2019 International Conference on Communication and Signal Processing (ICCSP). IEEE, pp 0216–0219

    Google Scholar 

  33. Perrin R, Elford DP, Chalmers L, Swallowe GM, Moore TR, Hamdan S, Halkon BJ (2014) Normal modes of a small gamelan gong. Acoust Soc Am 136(4):1942–1950. https://doi.org/10.1121/1.4895683

    Article  Google Scholar 

  34. Pasca DP, Aloisio A, Rosso MM, Sotiropoulos S (2022) PyOMA and PyOMA_GUI: a python module and software for operational modal analysis. SoftwareX 20:101216. https://doi.org/10.1016/j.softx.2022.101216

    Article  Google Scholar 

  35. Rosso MM, Aloisio A, Parol J, Marano GC, Quaranta G (2023) Intelligent automatic operational modal analysis. Mech Syst Signal Process 201:110669. https://doi.org/10.1016/j.ymssp.2023.110669

    Article  Google Scholar 

  36. Rosso MM, Cucuzza R, Marano GC, Aloisio A, Cirrincione G (2022) Review on deep learning in structural health monitoring. In: Bridge safety, maintenance, management, life-cycle, resilience and sustainability, 1st Edition. CRC Press, London

    Google Scholar 

  37. Kumar A, Chary SS, Wani KP (2020) Modal analysis of Chladni plate using cymatics. SAE Technical Paper 2020-28-0320. https://doi.org/10.4271/2020-28-0320

  38. Sato J, Hutchings IM, Woodhouse J (2008) Determination of the dynamic elastic properties of paper and paperboard from the low-frequency vibration modes of rectangular plates. Appita J 61(4):291–296

    Google Scholar 

  39. Oh YJ, Kim S (2012) Experimental study of cymatics. Int J Eng Technol 4(4):434

    Article  Google Scholar 

  40. Gurukiran K, Samal PK (2021) Experimental determination of mode shapes of a plate using speaker as excitation device. In: IOP Conference Series: Materials Science and Engineering, vol 1189, no 1, p 012029. IOP Publishing

    Google Scholar 

  41. Ma X, Zhang J, Yan S (2012) Experimental modal analysis and modal reproduce experiment research of a Chladni plate. Appl Mech Mater 152–154:1401–1405. https://doi.org/10.4028/www.scientific.net/AMM.152-154.1401

    Article  Google Scholar 

  42. Gaygol S, Wani K (2023) Modal analysis of plate to analyze the effect of mass stiffeners using the Chladni plate approach. Mater Today Proc 72:1314–1321

    Article  Google Scholar 

  43. Joshi VY, Wani KP (2023) Visual techniques for vibration analysis at ultrasonic frequencies. https://www.irmas.in/previous-conferences. Abstract booklet 2023, Paper id: 161

  44. Dixit A, Wani KP (2023) Modal and harmonic acoustical analysis of a circular rubber membrane and classification of resonant frequencies using deep learning. https://www.irmas.in/previous-conferences. Abstract booklet 2023, Paper id: 145

  45. Kaczmarek A, Javorek L, Orlowski K (2014) Mode vibrations of plates—experimental analysis. Ann Warsaw Univ Life Sci For Wood Technol 88:97–101

    Google Scholar 

  46. Lemeš S, Zaimović-Uzunović N (2002) Mode shapes of centrifugal pump impeller. In: Proceedings of the 6th International Research/Expert Conference on Trends in the Development of Machinery and Associated Technology (TMT 2002), Neum, Bosnia and Herzegovina, pp 18–22

    Google Scholar 

  47. Tuan PH, Wen CP, Yu YT, Liang HC, Huang KF, Chen YF (2014) Exploring the distinction between experimental resonant modes and theoretical Eigenmodes: from vibrating plates to laser cavities. Phys Rev E 89:022911. https://doi.org/10.1103/PhysRevE.89.022911

    Article  Google Scholar 

  48. Tseng YC, Hsu YH, Lai YH, Yu YT, Liang HC, Huang KF, Chen YF (2021) Exploiting modern Chladni plates to analogously manifest the point interaction. Appl Sci 11(21):10094

    Article  Google Scholar 

  49. Trejo-Mandujano HA, Mijares-Bernal G, Ordoñez-Casanova EG (2015) Alternate model of Chladni figures for the circular homogenous thin plate case with open boundaries. J Phys Conf Ser 582:012022. https://doi.org/10.1088/1742-6596/582/1/012022

    Article  Google Scholar 

  50. Tuan PH, Tung JC, Liang HC, Chiang PY, Huang KF, Chen YF (2015) Resolving the formation of modern Chladni figures. Europhys Lett 111:64004. https://doi.org/10.1209/0295-5075/111/64004

    Article  Google Scholar 

  51. Tuan PH, Wen CP, Chiang PY, YuH YT, LiangK C, Huang F, ChenKML YF (2015) Exploring the resonant vibration of thin plates: reconstruction of Chladni patterns and determination of resonant wave numbers. J Acoust Soc Am 137(2113):2113–2123. https://doi.org/10.1121/1.4916704,doi:10.1121/1.4916704

    Article  Google Scholar 

  52. Skrodzki M, Reitebuch U, Polthier K (2016) Chladni figures revisited: a peek into the third dimension. In: Bridges Finland Conference Proceedings, Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, pp 481–484. Tessellations Publishing, Phoenix, AZ

    Google Scholar 

  53. Shi K, Ahmed D, Mao X, Lin SS-C, Lawita A, Huang TJ (2009) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). R Soc Chem https://doi.org/10.1039/b910595f

  54. Latifi K, Kopitca A, Zhou Q (2020) Model-free control for dynamic-field acoustic manipulation using reinforcement learning. IEEE Access 8:20597–20606. https://doi.org/10.1109/ACCESS.2020.29

    Article  Google Scholar 

  55. Latifi K, Wijaya H, Zhou Q (2019) Motion of heavy particles on a submerged Chladni plate. Phys Rev Lett 122(18):184301

    Article  Google Scholar 

  56. Kopitca A, Latifi K, Zhou Q (2021) Programmable assembly of particles on a Chladni plate. Sci Adv 7(39):eabi7716

    Article  Google Scholar 

  57. Podolak KR, Wickramasinghe VA, Mansfield GA, Tuller AM (2021) Manipulating Chladni patterns of ferromagnetic materials by an external magnetic field

    Google Scholar 

  58. Latifi K, Wijaya H, Zhou Q (2017) Multi-particle acoustic manipulation on a Chladni plate. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, pp 1–7

    Google Scholar 

  59. Hou Z, Zhou Z, Lv Z, Pei Y (2021) Particles separation using the inverse Chladni pattern enhanced local Brazil nut effect. Extreme Mech Lett 49:101466

    Article  Google Scholar 

  60. Reutskiy SY (2009) Vibration analysis of arbitrarily shaped membranes. Tech Science Press CMES 51(2):115–141

    MathSciNet  Google Scholar 

  61. D’Alessio SJD (2021) Forced free vibrations of a square plate. SN Appl Sci Springer Nat J 3:60. https://doi.org/10.1007/s42452-020-04062-6

    Article  Google Scholar 

  62. Babu E, Yesudasan S, Chacko S (2021) Cymatics inspired self-cleaning mechanism for solar panels. Microsyst Technol 27(3):853–861

    Article  Google Scholar 

  63. van Gerner HJ, van der Hoef MA, van der Meer D, van der Weele K (2010) Inversion of Chladni patterns by tuning the vibrational acceleration. Phys Rev E 82:012301. https://doi.org/10.1103/PhysRevE.82.012301

    Article  Google Scholar 

  64. van Gerner HJ, van Der Weele K, van der Hoef MA, van der Meer D (2011) Air-induced inverse Chladni patterns. J Fluid Mech 689:203–220

    Article  Google Scholar 

  65. Fan W, Qiao P (2010) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit. https://doi.org/10.1177/1475921710365419

    Article  Google Scholar 

  66. Rzepecki J, Chraponska A, Budzan S, Isaac CW, Mazur K, Pawelczyk M (2020) Chladni figures in modal analysis of a double-panel structure. Sensors 20:4084. https://doi.org/10.3390/s20154084

    Article  Google Scholar 

  67. Yang Y, Sanchez L, Zhang H, Roeder A, Bowlan J, Crochet J, Farrar C, Mascareñas D (2019) Estimation of full-field, full-order experimental modal model of cable vibration from digital video measurements with physics-guided unsupervised machine learning and computer vision. Struct Control Health Monitoring 2019:e2358. https://doi.org/10.1002/stc.2358

    Article  Google Scholar 

  68. Sava P, Asphaug E (2019) Seismology on small planetary bodies by orbital laser Doppler vibrometry. Adv Space Res 64:527–544. https://doi.org/10.1016/j.asr.2019.04.017

    Article  Google Scholar 

  69. Duvigneau F, Koch S, Orszulik R, Woschke E, Gabbert U (2016) About the vibration modes of square plate-like structures. Tech Mech 36(3):180–189

    Google Scholar 

  70. Luo Y, Feng R, Li X, Liu D (2019) A simple approach to determine the mode shapes of Chladni plates based on the optical lever method. Eur J Phys 40(6):065001

    Article  Google Scholar 

  71. Finotti RP, Cury AA, Barbosa FD (2019) An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements. Latin Am J Solids Struct 16(2):e165. https://doi.org/10.1590/1679-78254942

    Article  Google Scholar 

  72. Lei J, Cheng F, Liu G, Li K, Guo Z (2020) Dexterous formation of unconventional Chladni patterns using standing bulk acoustic waves. Appl Phys Lett 117(18):184101

    Article  Google Scholar 

  73. Lin WT, Li CY, Chen KC (2021) Sound-controlled Chladni patterns in blue bottle reactions and acid-base systems

    Google Scholar 

  74. McGowan J, Leplâtre G, McGregor I (2017) Cymasense: a real-time 3d cymatics-based sound visualisation tool. In: Proceedings of the 2017 ACM Conference Companion Publication on Designing Interactive Systems, pp 270–274

    Google Scholar 

  75. Miljković D (2021) Cymatics for visual representation of aircraft engine noise. In: 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, pp 914–919

    Google Scholar 

  76. Wojtczak E, Rucka M (2019) Wave frequency effects on damage imaging in adhesive joints using lamb waves and RMS. Materials 12:1842. https://doi.org/10.1590/1679-78254942

    Article  Google Scholar 

  77. Chen Z, **ao W, Pan F, Hao H, Ma L (2019) Modal analysis using camera-based heterodyne interferometry and acoustic excitation. Mech Syst Signal Process 128:295–304

    Article  Google Scholar 

  78. Chen Z, Gryllias K, Li W (2019) Mechanical fault diagnosis using convolutional neural networks and extreme learning machine. Mech Syst Signal Process 133:106272. https://doi.org/10.1016/j.ymssp.2019.106272

    Article  Google Scholar 

  79. Aoyama T, Li L, Jiang M, Takaki T, Ishii I, Yang H, Umemoto C, Matsuda H, Chikaraishi M, Fujiwara A (2019) Vision-based modal analysis using multiple vibration distribution synthesis to inspect large-scale structures. J Dyn Syst Measurem Control 141(3):031007. https://doi.org/10.1115/1.4041604

    Article  Google Scholar 

  80. Li X, Liu Z, Qu Y, He D (2018) Unsupervised gear fault diagnosis using raw vibration signal based on deep learning. In: 2018 IEEE Prognostics and System Health Management Conference, 2166–5656/18/

    Google Scholar 

  81. Li C, Zhenga Z, Liua M, Rena X, Dua C, Huangd H, Ruana S (2018) Modal analysis of rotating mirror for ultra-high-speed Cameras. Optik 168:503–508. https://doi.org/10.1016/j.ijleo.2018.04.086

    Article  Google Scholar 

  82. Zhou B, Cheng Y (2016) Fault diagnosis for rolling bearing under variable conditions based on image recognition. Shock Vib 2016:1948029

    Google Scholar 

  83. Davis A, Bouman KL, Chen JG, Rubinstein M, Durand F, Freeman WT (2015) Visual vibrometry: estimating material properties from small motions in video. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  84. Davis A, Rubinstein M, Wadhawa N, Mysore GJ, Durand F, Freeman WT (2014) The visual microphone: passive recovery of sound from video. In: Image processing and computer vision, SIGGRAPH 2014. The 41st International conference and exhibition on computer graphics and interactive techniques

    Google Scholar 

  85. Wu JD, Chiang PH (2009) Application of Wigner-Ville distribution and probability neural network for scooter engine fault diagnosis. Expert Syst Appl 36(2):2187–2199

    Article  Google Scholar 

  86. Igea F, Cicirello A (2020) Part-to-part variability assessment of material properties for flat thin orthotropic rectangular panels using Chladni patterns. Mech Syst Signal Process 139:106559. https://doi.org/10.1016/j.ymssp.2019.1065590888-3270/_2020ElsevierLtd

    Article  Google Scholar 

  87. Janusson E, Penafiel J, MacLean S, Macdonald A, Paci I, McIndoe JS (2020) Orbital shaped standing waves using Chladni plates. Chem Educ. https://doi.org/10.1333/s00897202898a

    Article  Google Scholar 

  88. Neuwerk K, Haupt M, Gresser GT (2020) Sound absorption by textile resonators. Vibroeng Proc 31:103–108. https://doi.org/10.21595/vp.2020.21309

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wani, K., Khedkar, N., Jatti, V., Khedkar, V. (2024). Chladni Plate and Chladni Patterns—A Research Review of Theory, Modelling, Simulation and Engineering Applications. In: Pandit, M., Gaur, M.K., Kumar, S. (eds) Artificial Intelligence and Sustainable Computing. ICSISCET 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-97-0327-2_42

Download citation

Publish with us

Policies and ethics

Navigation