Nanomaterials for Diagnosis and Treatment of Common Neurological Disorders

  • Chapter
  • First Online:
Nanomaterials for Drug Delivery and Neurological Diseases Management

Abstract

Smart nanomaterials have emerged as a promising approach for drug delivery and the management of neurological diseases. Neurodegenerative disorders pose significant challenges in terms of treatment due to the limited ability of drugs to cross the blood–brain barrier (BBB) and effectively reach the affected regions in the central nervous system (CNS). However, advancements in nanotechnology offer exciting opportunities to overcome these limitations by utilizing smart nanomaterials for targeted drug delivery. Neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and others, are characterized by the gradual deterioration of neuronal structure and function, leading to neuronal death. Despite extensive drug screening efforts, no particular treatment is available that can cure these diseases or effectively reduce their progression. Smart nanomaterials, which possess the ability to respond and adapt to external stimuli, have distinct advantages for neuro-drug delivery. These nanomaterials can be engineered to respond to specific triggers, such as changes in temperature, pH, or enzymatic activity, to release drugs at the desired site within the body. This targeted drug delivery approach enhances therapeutic efficacy, minimizes side effects, and reduces the required dosage, thereby improving patient outcomes. Furthermore, smart nanomaterials can be functionalized to cross the BBB, allowing for the delivery of therapeutic agents directly to the brain. This approach holds great promise for the treatment of neurodegenerative disorders, as it enables higher drug concentrations at the site of action, improving treatment outcomes. Despite these promising advantages, the clinical translation of smart nanomaterials for neuro-drug delivery also faces challenges and limitations. Ensuring the safety and biocompatibility of these materials is crucial, as they interact with the intricate and sensitive structures of the CNS. A thorough assessment of toxicity, long-term effects, and potential immunological reactions is essential to mitigate any adverse effects on neuronal function or overall health. The journey toward clinical translation of nanomedicines for brain drug delivery is complex and requires careful consideration of regulatory and ethical issues. Adequate in vitro and animal models that accurately represent human physiology are essential for reliable and predictive outcomes in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asil SM, Ahlawat J, Barroso GG, Narayan M (2020) Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 8(15):4109–4128

    Article  PubMed Central  Google Scholar 

  2. Asil SM et al (2020) Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 8(15):4109–4128. https://doi.org/10.1039/d0bm00809e

  3. Andreone BJ, Larhammar M, Lewcock JW (2020) Cell death and neurodegeneration. Cold Spring Harb Perspect Biol 12(2):a036434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY (2023) Role of nanomedicine-based therapeutics in the treatment of CNS disorders. Molecules 28(3):1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naqvi S, Panghal A, Flora SJ (2020) Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front Neurosci 14:498007

    Article  Google Scholar 

  6. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery 20(2):101–124

    Article  CAS  PubMed  Google Scholar 

  7. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 14(1):93–126

    Article  CAS  PubMed  Google Scholar 

  8. Jhaveri J, Raichura Z, Khan T, Momin M, Omri A (2021) Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 26(2):272

    Google Scholar 

  9. Lundy DJ, Nguyễn H, Hsieh PC (2021) Emerging nano-carrier strategies for brain tumor drug delivery and considerations for clinical translation. Pharmaceutics 13(8):1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anthony DP, Hegde M, Shetty SS, Rafic T, Mutalik S, Rao BS (2021) Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci 274:119326

    Article  CAS  PubMed  Google Scholar 

  11. Babazadeh A, Mohammadi Vahed F, Jafari SM (2020) Nanocarrier-mediated brain delivery of bioactivesfor treatment/prevention of neurodegenerative diseases. J Control Release 321:211–221

    Article  CAS  PubMed  Google Scholar 

  12. Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE (2019) Overcoming hurdles in nanoparticleclinical translation: The influence of experimental design and surface modification. Int J Mol Sci 20(23):6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O (2020) Therapeutic nanoparticles and their targeted delivery applications. Molecules 25(9):2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edoziuno FO et al (2023) Nanomaterials. In: Elsevier eBooks, pp 19–30. https://doi.org/10.1016/b978-0-323-95158-6.00023-0

  15. Aflori M (2021) Smart nanomaterials for biomedical applications—a review. Nanomaterials 11(2):396. https://doi.org/10.3390/nano11020396

  16. Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater:1–26. https://doi.org/10.1155/2019/3702518

  17. Sharma D, Hussain CM (2020) Smart nanomaterials in pharmaceutical analysis. Arab J Chem 13(1):3319–3343. https://doi.org/10.1016/j.arabjc.2018.11.007.

  18. Mao L et al (2021) A high-sensitivity flexible direct X-ray detector based on Bi2O3/PDMS nanocomposite thin film. Nanomaterials 11(7):1832. https://doi.org/10.3390/nano11071832

  19. Mann GS, Singh L, Kumar P (2021) Potential applications of polymeric-nanomaterial as drug delivery carriers in the biomedical field. In: Elsevier eBooks, pp 109–134. https://doi.org/10.1016/b978-0-12-823152-4.00004-1

  20. Sánchez-López E, Paús A, Pérez-Pomeda I, Calpena A., Haro I, Gómara MJ (2020) Lipid vesicles loaded with an HIV-1 fusion inhibitor peptide as a potential microbicide. Pharmaceutics 12(6):502

    Google Scholar 

  21. Fu Q et al (2022) Biomarker‐responsive nanosystems for chronic disease theranostics. Adv Funct Mater 33(2):2206300. https://doi.org/10.1002/adfm.202206300

  22. Rehman S et al (2020) Nanoparticle based gene therapy approach: a pioneering rebellion in the management of psychiatric disorders. Curr Gene Ther 20(3):164–173. https://doi.org/10.2174/1566523220666200607185903

  23. Boca S et al (2019) Nanoscale delivery systems for microRNAs in cancer therapy. Cell Mol Life Sci 77(6):1059–1086. https://doi.org/10.1007/s00018-019-03317-9

  24. Hosseinpour S, Walsh LJ (2020) Laser-assisted nucleic acid delivery: a systematic review. J Biophotonics 14(1).https://doi.org/10.1002/jbio.202000295

  25. Burnouf T et al (2021) Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. Pharmaceutics 13(8):1183. https://doi.org/10.3390/pharmaceutics13081183

  26. Correia AMH et al (2022) Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 189:114485. https://doi.org/10.1016/j.addr.2022.114485

  27. Kumar AS, Fuh JYH, Dheen ST (2020) Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res Part B Appl Biomater 109(2):160–179. https://doi.org/10.1002/jbm.b.34688

  28. Xu R et al (2020) Rhynchophylline Loaded-mPEG-PLGA nanoparticles coated with Tween-80 for preliminary study in Alzheimer’s disease. Int J Nanomedicine 15:1149–1160. https://doi.org/10.2147/ijn.s236922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mehrasa M et al (2022) Silica nano particles embedded in random and aligned PLGA/gelatin electrospun nano fibers improve growth and differentiation of human adipose-derived stem cells into anterior neuroectodermal cells. Mater Today Commun 31:103461. https://doi.org/10.1016/j.mtcomm.2022.103461.

  30. Ashori R, Mirzahosseini SAH (2020) In vitro speciation of molybdenum in human biological samples based on thiol functionalized mesoporous silica nanoparticles and hexyl-methylimidazolium tris-pentafluoroethyl-trifluorophosphate. Anal Methods Environ Chem J 3(3):54–64. https://doi.org/10.24200/amecj.v3.i03.115

  31. Sharma B, Pervushin K (2020) Magnetic nanoparticles as in vivo tracers for Alzheimer’s disease. Magnetochemistry 6(1):13. https://doi.org/10.3390/magnetochemistry6010013

  32. Hubert V et al (2019) MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-46566-1

  33. **ang C et al (2020) Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharm Sin B 10(2):239–248. https://doi.org/10.1016/j.apsb.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  34. Perini G et al (2020) Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. Int J Mol Sci 21(10):3712. https://doi.org/10.3390/ijms21103712

  35. Nazari Z et al (2023) An electrochemical sensor based on carbon quantum dots and ionic liquids for selective detection of dopamine. Chem Sel 8(3).https://doi.org/10.1002/slct.202203630

  36. Ko W-C et al (2022) pharmacological role of functionalized gold nanoparticles in disease applications. Molecules 27(5):1551. https://doi.org/10.3390/molecules27051551

  37. Xue J et al (2019) Neuroprotective effect of biosynthesised gold nanoparticles synthesised from root extract of Paeonia moutan against Parkinson disease – In vitro & In vivo model. J Photochem Photobiol B-Biol 200:111635. https://doi.org/10.1016/j.jphotobiol.2019.111635

  38. Li X et al (2022) Applications and mechanisms of stimuli-responsive hydrogels in traumatic brain injury. Gels 8(8):482. https://doi.org/10.3390/gels8080482

  39. Avila-Salas F, Durán-Lara EF (2019) An overview of injectable thermo-responsive hydrogels and advances in their biomedical applications. Curr Med Chem 27(34):5773–5789. https://doi.org/10.2174/0929867325666190603110045

  40. Mahlumba P et al (2021) Fabrication and characterisation of a photo-responsive, injectable nanosystem for sustained delivery of macromolecules. Int J Mol Sci 22(7):3359. https://doi.org/10.3390/ijms22073359

  41. Shi W et al (2020) Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Appl Mater & Interfaces 12(5):5177–5194. https://doi.org/10.1021/acsami.9b16770

  42. Yan H et al (2019) An electrically and magnetically responsive nanocomposite of GdPO4·H2O/P3HT/PLGA with electrical stimulation for synergistically enhancing the proliferation and differentiation of pre-osteoblasts. New J Chem 43(44):17315–17326. https://doi.org/10.1039/c9nj04167b

    Article  CAS  Google Scholar 

  43. Shen K et al (2021) Anti‐inflammatory nanotherapeutics by targeting matrix metalloproteinases for immunotherapy of spinal cord injury. Small 17(41):2102102. https://doi.org/10.1002/smll.202102102

  44. Ma S et al (2021) Sodium alginate/collagen/stromal cell-derived factor-1 neural scaffold loaded with BMSCs promotes neurological function recovery after traumatic brain injury. Acta Biomaterialia 131:185–197. https://doi.org/10.1016/j.actbio.2021.06.038

  45. Zheng Y-T et al (2021) Neuro-regenerative imidazole-functionalized GelMA hydrogel loaded with hAMSC and SDF-1α promote stem cell differentiation and repair focal brain injury. Bioact Mater 6(3):627–637. https://doi.org/10.1016/j.bioactmat.2020.08.026

    Article  CAS  PubMed  Google Scholar 

  46. Lee G et al (2022) Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Adv Drug Deliv Rev 188:114419. https://doi.org/10.1016/j.addr.2022.114419

  47. G Wang et al (2020) Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Materials Today Bio 6:100055. https://doi.org/10.1016/j.mtbio.2020.100055

  48. Bilal M et al (2020) Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: an overview. NanoImpact 20:100251. https://doi.org/10.1016/j.impact.2020.100251

  49. Hanif S et al (2021) Nanotechnology‐based strategies for early diagnosis of central nervous system disorders. Adv Nanobiomed Res 1(10):2100008. https://doi.org/10.1002/anbr.202100008.

  50. Kerry RG et al (2021) A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 9(10):3576–3602. https://doi.org/10.1039/d0bm02164d

  51. Yu S et al (2019) Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 560:282–293. https://doi.org/10.1016/j.ijpharm.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  52. Moorthy H, Govindaraju T (2021) Dendrimer architectonics to treat cancer and neurodegenerative diseases with implications in theranostics and personalized medicine. ACS Appl Bio Mater 4(2):1115–1139. https://doi.org/10.1021/acsabm.0c01319

  53. Wang Z et al (2023) Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology. https://doi.org/10.1002/wnan.1907

  54. Kumar AS, Dheen ST, Fuh JYH (2021) A review of multi-functional ceramic nanoparticles in 3D printed bone tissue engineering. Bioprinting 23:e00146. https://doi.org/10.1016/j.bprint.2021.e00146

  55. Ciceks H (2023) Treatment of brain tumors and age-dependent neurodegenerative diseases using nano medicine: advantages and limits. http://www.ijtos.com/index.php/journal/article/view/6

  56. Akhtar A et al (2021) Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release, 330:1152–1167. https://doi.org/10.1016/j.jconrel.2020.11.021

  57. Naziris N, Demetzos C (2021) Advanced Health Technologies and Nanotechnologies in Neurodegenerative Diseases. In: Springer eBooks, p 317. https://doi.org/10.1007/978-3-030-78787-5_37

  58. Singha S et al (2019) An endeavor in the reaction-based approach to fluorescent probes for biorelevant analytes: challenges and achievements. Acc Chem Res 52(9):2571–2581. https://doi.org/10.1021/acs.accounts.9b00314

  59. Thangudu S (2020) Next generation nanomaterials: smart nanomaterials, significance, and biomedical applications. In: Springer eBooks, pp 287–312. https://doi.org/10.1007/978-981-15-4802-4_15

  60. Ivask A, Pilkington EH, Blin T, Käkinen A, Vija H, Visnapuu M, Quinn JF, Whittaker MR, Qiao R, Davis TP, Ke PC (2018) Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood-brain barrier model. Biomater Sci 6(2):314–323

    Article  CAS  PubMed  Google Scholar 

  61. Tsai YC, Vijayaraghavan P, Chiang WH, Chen HH, Liu TI, Shen MY, Omoto A, Kamimura M, Soga K, Chiu HC (2018) Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma. Theranostics 8(5):1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. **e J, Shen Z, Anraku Y, Kataoka K, Chen X (2019) Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 224:119491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saeedi M, Eslamifar M, Khezri K, Dizaj SM (2019) Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 111:666–675

    Article  CAS  PubMed  Google Scholar 

  64. Hersh AM, Alomari S, Tyler BM (2022) Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci 23(8)

    Google Scholar 

  65. Johnsen KB, Bak M, Melander F, Thomsen MS, Burkhart A, Kempen PJ, Andresen TL, Moos T (2019) Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Control Release 295:237–249

    Article  CAS  PubMed  Google Scholar 

  66. Alkilany AM, Zhu L, Weller H, Mews A, Parak WJ, Barz M, Feliu N (2019) Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 143:22–36

    Article  CAS  PubMed  Google Scholar 

  67. Anraku Y, Kuwahara H, Fukusato Y, Mizoguchi A, Ishii T, Nitta K, Matsumoto Y, Toh K, Miyata K, Uchida S, Nishina K (2017) Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun 8(1):1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pardridge WM (2023) Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol Med 29(5):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Markowicz-Piasecka M, Markiewicz A, Darłak P, Sikora J, Adla SK, Bagina S, Huttunen KM (2022) Current chemical, biological, and physiological views in the development of successful brain-targeted pharmaceutics. Neurotherapeutics 19(3):942–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang B, Tang M, Yuan Z, Li Z, Hu B, Bai X, Chu J, Xu X, Zhang Q (2022) Targeted delivery of a STING agonist to brain tumors using bioengineered protein nanoparticles for enhanced immunotherapy. Bioactive Materials 16:232–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toccaceli G, Barbagallo G, Peschillo S (2019) Low-intensity focused ultrasound for the treatment of brain diseases: safety and feasibility. Theranostics 9(2):537–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duan L, Li X, Ji R, Hao Z, Kong M, Wen X, Guan F, Ma S (2023) Nanoparticle-based drug delivery systems: an inspiring therapeutic strategy for neurodegenerative diseases. Polymers 15(9):2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R (2021) Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 9(12):2756–2784

    Article  CAS  PubMed  Google Scholar 

  74. Sun Y, Du L, Yang M, Li Q, Jia X, Li Q, Zhu L, Zhang Y, Liu Y, Liu S (2021) Brain-targeted drug delivery assisted by physical techniques and its potential applications in traditional Chinese medicine. J Tradit Chin Med Sci 8(3):186–197

    CAS  Google Scholar 

  75. Jones RM, Deng L, Leung K, McMahon D, O’Reilly MA, Hynynen K (2018) Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening. Theranostics 8(11):2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Israel LL, Galstyan A, Holler E, Ljubimova JY (2020) Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release 320:45–62

    Google Scholar 

  77. Majerova P, Hanes J, Olesova D, Sinsky J, Pilipcinec E, Kovac A (2020) Novel blood-brain barrier shuttle peptides discovered through the phage display method. Molecules (Basel, Switzerland) 25(4):874

    Article  CAS  PubMed  Google Scholar 

  78. McCully M, Sanchez-Navarro M, Teixido M, Giralt E (2018) Peptide mediated brain delivery of nano-and submicroparticles: a synergistic approach. Curr Pharm Des 24(13):1366–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jafari B, Pourseif MM, Barar J, Rafi MA, Omidi Y (2019) Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv 16(6):583–605

    Article  CAS  PubMed  Google Scholar 

  80. Ukhurebor KE et al (2022) A methodical review on the applications and potentialities of using nanobiosensors for disease diagnosis. BioMed Res Int 2022:1–20. https://doi.org/10.1155/2022/1682502

    Article  CAS  Google Scholar 

  81. Kumar R et al (2020) Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol 57:101617. https://doi.org/10.1016/j.jddst.2020.101617

  82. Behboudi H et al (2019) Carbon quantum dots in nanobiotechnology. In: Advanced structured materials. Springer International Publishing, pp 145–179. https://doi.org/10.1007/978-3-030-10834-2_6.

  83. Angolkar M et al (2022) Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 13(11):531–557. https://doi.org/10.4155/tde-2022-0035

  84. Jeong Y-C et al (2020) Progress in brain‐compatible interfaces with soft nanomaterials. Adv Mater 32(35):1907522. https://doi.org/10.1002/adma.201907522

  85. Sharma AK (2023) Current trends in nanotheranostics: a concise review on bioimaging and smart wearable technology. Nanotheranostics 7(3):258–269. https://doi.org/10.7150/ntno.82886

  86. Sadeghi A et al (2023) Brainy biomaterials: latest advances in smart biomaterials to develop the next generation of neural interfaces. Curr Opin Biomed Eng 25:100420

    Article  CAS  Google Scholar 

  87. Talele S, Mohammad AS, Schulz JA, Bauer B, Hartz AM, Sarkaria JN, Elmquist WF (2022) Drug delivery to primary and metastatic brain tumors: challenges and opportunities. In: Drug delivery to the brain: physiological concepts, methodologies and approaches, pp 723–762

    Google Scholar 

  88. Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, Heyn C, Alkins R, Trudeau M, Sahgal A, Perry J (2019) Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 9(1):321

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chen E, Chen BM, Su YC, Chang YC, Cheng TL, Barenholz Y, Roffler SR (2020) Premature drug release from polyethylene glycol (PEG)-coated liposomal doxorubicin via formation of the membrane attack complex. ACS Nano 14(7):7808–7822

    Article  CAS  PubMed  Google Scholar 

  90. Peltonen L (2018) Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev 131:101–115

    Article  CAS  PubMed  Google Scholar 

  91. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C (2020) The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci 8(17):4653–4664

    Article  CAS  PubMed  Google Scholar 

  92. Zabeo A, Rosada F, Pizzol L, Caputo F, Borgos SE, Parot J, Geertsma RE, Pouw JJ, Vandebriel RJ, Moreno OI, Hristozov D (2022) A decision support system for preclinical assessment of nanomaterials in medical products: the REFINE DSS. Drug Deliv Transl Res 12(9):2101–2113

    Article  PubMed  PubMed Central  Google Scholar 

  93. Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ (2021) Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res:1–26

    Google Scholar 

  94. Sahariah M, Sahariah JJ, Paul S, Sharma HK (2019) Nanomedicinal devices and nanomedicines: its challenges and regulations. Curr Trends Pharm Res 6(2)

    Google Scholar 

  95. Mohanta D, Patnaik S, Sood S, Das N (2019) Carbon nanotubes: evaluation of toxicity at biointerfaces. J Pharm Anal 9(5):293–300

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mistretta M, Farini A, Torrente Y, Villa C (2023) Multifaceted nanoparticles: emerging mechanisms and therapies in neurodegenerative diseases. Brain 146(6):2227–2240

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ayub A, Wettig S (2022) An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics 14(2):224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vagish Dwibedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, G. et al. (2024). Nanomaterials for Diagnosis and Treatment of Common Neurological Disorders. In: Rath, S.K., Dwibedi, V., Husen, A., Akhtar, N. (eds) Nanomaterials for Drug Delivery and Neurological Diseases Management. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-97-0308-1_8

Download citation

Publish with us

Policies and ethics

Navigation