Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 20 Accesses

Abstract

Drug delivery systems have the potential of deciding the efficiency of a therapeutic agent. The potential of a drug is often limited by the lack of effective delivery systems and therefore, past few years have seen tremendous upsurge in the research oriented towards development of different systems for the drug delivery systems. From the development of orally administered pills to nanoparticles-based delivery systems, the technologies for drug deliveries have come a long way. The first big success is the development of biological, chemical and physical means that are adopted to alter the pharmacokinetic properties of the drug to exhibit the desired pharmacological effect and remove undesirable physiochemical properties. Development in drug delivery systems can be described through different phases which are described as different generations of the drug delivery system. Sustained gradual release is the first generation of control drug release practice in which a drug is packed in a capsule or in the form of a capsule that releases drug with it when mixed with water in the stomach. On the other hand, targeted drug delivery system is a special system of drug delivery in which the drug is selectively targeted only to the site of action/absorption and not to the non-target tissues, cells or organ. This chapter provides a glimpse of various physiochemical and biological barriers that restrict effective drug delivery and the techniques adopted to overcome these barriers for effective drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel WH, Berke A (2009) Brief history of vision and ocular medicine. Kugler, Amsterdam

    Google Scholar 

  2. Jones KH (1977) Bioavailability of talampicillin. BMJ 2(6081):232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu L (2005) Prodrug approaches to drug delivery. Drug Deliv: Princ Appl:125–165

    Google Scholar 

  4. Zhang W, Zhao Q, Deng J, Hu Y, Wang Y, Ouyang D (2017) Big data analysis of global advances in pharmaceutics and drug delivery 1980–2014. Drug Discov Today 22:1201–1208

    Article  CAS  PubMed  Google Scholar 

  5. Hillery AM, Park K (2017) Drug delivery: fundamentals & applications, 2nd edn. CRC Press

    Google Scholar 

  6. Thakur A, Roy A, Chatterjee S, Chakraborty P, Bhattacharya K, Mahata PP (2015) Recent trends in targeted drug delivery. SMGroup

    Google Scholar 

  7. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  CAS  PubMed  Google Scholar 

  8. Hochman J, Artursson P (1994) Mechanisms of absorption enhancement and tight junction regulation. J Control Release 29(3):253–267

    Article  CAS  Google Scholar 

  9. Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42(6):620–643

    Article  CAS  PubMed  Google Scholar 

  10. Yap AS, Mullin JM, Stevenson BR (1998) Molecular analyses of tight junction physiology: insights and paradoxes. J Membr Biol 163(3):159–167

    Article  CAS  PubMed  Google Scholar 

  11. Fricker G, Drewe J (1996) Current concepts in intestinal peptide absorption. J Pept Sci: Off Publ Eur Pept Soc 2(4):195–211

    Article  CAS  Google Scholar 

  12. Lipka E, Crison J, Amidon GL (1996) Transmembrane transport of peptide type compounds: prospects for oral delivery. J Control Release 39(2–3):121–129

    Article  CAS  PubMed  Google Scholar 

  13. Goodwin JT, Conradi RA, Ho NF, Burton PS (2001) Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. J Med Chem 44(22):3721–3729

    Article  CAS  PubMed  Google Scholar 

  14. Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS17(1),

    Google Scholar 

  15. Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M (2020) Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS 17(1):1–29

    Article  Google Scholar 

  16. Verma A, Hesterman JY, Chazen JL, Holt R, Connolly P, Horky L, … Mozley PD (2020) Intrathecal 99mTc-DTPA imaging of molecular passage from lumbar cerebrospinal fluid to brain and periphery in humans. Alzheimer's & Dement: Diagn, Assess & Dis Monit 12(1):e12030

    Google Scholar 

  17. McCarthy TJ, Banks WA, Farrell CL, Adamu S, Derdeyn CP, Snyder AZ, Laforest R, Litzinger DC, Martin D, LeBel CP, Welch MJ (2002) Positron emission tomography shows that intrathecal leptin reaches the hypothalamus in baboons. J Pharmacol Exp Ther 301(3):878–883. https://doi.org/10.1124/jpet.301.3.878

  18. Yaksh TL, Scott B, LeBel CL (2002) Effects of continuous lumbar intrathecal infusion of leptin in rats on weight regulation. Neuroscience 110(4):703–710

    Article  CAS  PubMed  Google Scholar 

  19. Talegaonkar S, Mishra PR (2004) Intranasal delivery: an approach to bypass the blood brain barrier. Indian journal of pharmacology 36(3):140

    CAS  Google Scholar 

  20. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S (2018) Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 143:155–170

    Article  PubMed  Google Scholar 

  21. Appasaheb PS, Manohar SD, Bhanudas SR, Anjaneri N (2013) A review on intranasal drug delivery system. J Adv Pharm Educ Res 3(4)

    Google Scholar 

  22. Wacher VJ, Salphati L, Benet LZ (2001) Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv Drug Deliv Rev 46(1–3):89–102

    Article  CAS  PubMed  Google Scholar 

  23. Ndemazie NB, Inkoom A, Morfaw EF, Smith T, Aghimien M, Ebesoh D, Agyare E (2022) Multi-disciplinary approach for drug and gene delivery systems to the brain. AAPS Pharm Sci Tech 23(1):1–21

    Article  Google Scholar 

  24. Han HK, Amidon GL (2000) Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2(1):48–58

    Article  PubMed Central  Google Scholar 

  25. Hashimoto Y, Tachibana K, Kondoh M (2020) Tight junction modulators for drug delivery to the central nervous system. Drug Discovery Today 25(8):1477–1486

    Article  CAS  PubMed  Google Scholar 

  26. Hülper P, Veszelka S, Walter FR, Wolburg H, Fallier-Becker P, Piontek J … Deli MA (2013) Acute effects of short-chain alkylglycerols on blood-brain barrier properties of cultured brain endothelial cells. Br J Pharmacol 169(7):1561–1573

    Google Scholar 

  27. Singh S, Aggarwal A, Bhupathiraju NDK, Arianna G, Tiwari K, Drain CM (2015) Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem Rev 115(18):10261–10306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanderson JM (2012) Resolving the kinetics of lipid, protein and peptide diffusion in membranes. Mol Membr Biol 29(5):118–143

    Article  CAS  PubMed  Google Scholar 

  29. Cardona VMF, Hartley O, Botti P (2003) Synthesis of cyclic peptides from unprotected precursors using removable Nα-(1-(4-methoxyphenyl)-2-mercaptoethyl) auxiliary. J Pept Res 61(3):152–157

    Article  CAS  PubMed  Google Scholar 

  30. Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J … Akbar M (2010) Strategy for effective brain drug delivery. Eur J Pharm Sci 40(5) 385–403

    Google Scholar 

  31. Denora N, Trapani A, Laquintana V, Lopedota A, Trapani G (2009) Recent advances in medicinal chemistry and pharmaceutical technology-strategies for drug delivery to the brain. Curr Top Med Chem 9(2):182–196

    Article  CAS  PubMed  Google Scholar 

  32. Fu J, Yang J, Seeberger PH, Yin J (2020) Glycoconjugates for glucose transporter-mediated cancer-specific targeting and treatment. Carbohyd Res 498:108195

    Article  CAS  Google Scholar 

  33. Ingersoll KS, Cohen J (2008) The impact of medication regimen factors on adherence to chronic treatment: a review of literature. J Behav Med 31(3):213–224. https://doi.org/10.1007/s10865-007-9147-y

  34. Zhu L, Lu L, Wang S, Wu J, Shi J, Yan L, Liu Z (2017) Oral absorption basics: pathways and physicochemical and biological factors affecting absorption. Elsevier, Develo** solid oral dosage forms. Amsterdam, pp 297–329

    Google Scholar 

  35. Greenwald RB, Conover CD, Choe YH (2000) Poly(ethylene glycol) conjugated drugs and prodrugs: a comprehensive review. Crit Rev Ther Drug Carrier Syst 17(2):101–161. https://doi.org/10.1615/critrevtherdrugcarriersyst.v17.i2.20

    Article  CAS  PubMed  Google Scholar 

  36. Hussain Z, Wang S, Imran M, Sohail M, Shah SWA, de Matas M (2019) PEGylation: a promising strategy to overcome challenges to cancertargeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res 9(3):721–734. https://doi.org/10.1007/s13346-019-00631-4

    Article  CAS  PubMed  Google Scholar 

  37. Choudhury H, Gorain B, Madheswaran T, Pandey M, Kesharwani P, Tekade BW (2018) Drug complexation implications in drug solubilization and oral bioavailability enhancement. Elsevier, Dosage form design considerations. Amsterdam, pp 473–512

    Google Scholar 

  38. Aungst BJ (2012) Absorption enhancers: applications and advances. Aaps J 14(1):10–18. https://doi.org/10.1208/s12248-011-9307-4

    Article  CAS  PubMed  Google Scholar 

  39. Lemmer HJ, Hamman JH (2013) Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv 10(1):103–114. https://doi.org/10.1517/17425247.2013.745509

    Article  CAS  PubMed  Google Scholar 

  40. Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS (2013) Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 65(6):880–890. https://doi.org/10.1016/j.addr.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  41. Salahudeen MS, Nishtala PS (2017) An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. Saudi Pharm J 25(2):165–175

    Article  PubMed  Google Scholar 

  42. Negi LM, Garg AK, Chauhan M (2009) Ultradeformable vesicles: concept and execution. Pharma Times 41(9):11–14

    Google Scholar 

  43. Sankar V, Ruckmani K, Jailani S, Siva Ganesan K, Sharavanan SP (2010) Niosome drug delivery system. Indian Pharm 9(92):16–18

    CAS  Google Scholar 

  44. Weiner N, Martin F, Riaz M (1989) Liposomes as a drug delivery system. Drug Dev Indust Phar 15(10):1523–1554. https://doi.org/10.3109/03639048909052502

  45. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W (2022) Liposomes: structure, composition, types, and clinical applications. Heliyon 8(5):e09394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y (2015) A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 10(2):81–98

    Article  Google Scholar 

  47. Harashima H, Kiwada H (1996) Liposomal targeting and drug delivery: kinetic consideration. Adv Drug Deliv Rev 19(3):425–444

    Article  CAS  Google Scholar 

  48. Cabanes A, Even-Chen S, Zimberoff J, Barenholz Y, Kedar E, Gabizon A (1999) Enhancement of antitumor activity of polyethylene glycol-coated liposomal doxorubicin with soluble and liposomal interleukin 2, Clinical cancer research. Off J Am Assoc Canc Res 5:687–693

    CAS  Google Scholar 

  49. Chou H, Lin H, Liu JM (2015) A tale of the two PEGylated liposomal doxorubicins. Onco Targets Ther 8:1719–1720

    PubMed  PubMed Central  Google Scholar 

  50. Wasan EK, Gershkovich P, Zhao J, Zhu X, Werbovetz K, Tidwell RR et al (2010) A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral Leishmaniasis in a murine model. PLoS Negl Trop Dis 4(12):e913

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dubey V, Mishra D, Jain NK (2007) Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm 67(2):398–405. https://doi.org/10.1016/j.ejpb.2007.03.007

  52. de Oliveira BE, Junqueira Amorim OH, Lauro Lima L, Rezende RA, Mestnik NC, Bagatin E, Leonardi GR (2021) 5-Fluorouracil innovative drug delivery systems to enhance bioavailability for topical use. J Drug Deliv Sci Technol 61102155-10. https://doi.org/1016/j.jddst.2020.102155

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasdeep Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Nidhi, Thakur, B., Dwibedi, V., Singh, J. (2024). Fundamentals of Drug Delivery. In: Rath, S.K., Dwibedi, V., Husen, A., Akhtar, N. (eds) Nanomaterials for Drug Delivery and Neurological Diseases Management. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-97-0308-1_3

Download citation

Publish with us

Policies and ethics

Navigation