The Role of Arbuscular Mycorrhiza Fungi in Zinc and Iron Nutrition of Crops

  • Chapter
  • First Online:
Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Nutrient and Crop Management

Abstract

Global agriculture is threatened by growing world food demands and its supply under finite resources with degraded soil fertility and climatic variabilities. The yield of majority of crops is limited due to soil heterogeneity in nutrient availability. Arbuscular mycorrhizal fungi (AMF) are symbionts of majority of terrestrial land plants, including major agricultural crops. The hyphae network of AMF provides soil stability and helps mutually to plants in water and nutrient uptake. In this chapter, we discussed the role of AMF in Zn and Fe uptake in plants, and the significance of Zn and Fe in plant growth and stress tolerance. Further, we highlighted different mechanisms used by AMF in improving the uptake of Zn and Fe in various crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, et al. Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol. 2005;35:599–609. https://doi.org/10.1016/j.apsoil.2006.09.012.

    Article  Google Scholar 

  2. Cummings JA, Kovacic JP. The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care. 2009;19:215–40. https://doi.org/10.1111/j.1476-4431.2009.00418.x.

    Article  Google Scholar 

  3. Robertson GP, Swinton SM. Reconciling agricultural productivity and environmental integrity is a grand challenge for agriculture. Front Ecol Environ. 2005;3:39–46.

    Google Scholar 

  4. Smith SE, Read DJ. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol. 2009;182:347–58.

    Google Scholar 

  5. Hart MM, Trevors JT. Microbe management: application of mycorrhizal fungi in sustainable agriculture. Front Ecol Environ. 2005;3:533–9. https://doi.org/10.2307/3868609.

    Article  Google Scholar 

  6. Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read D. Network of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 2004;82:1016–45.

    Article  Google Scholar 

  7. Marschner H. Mineral nutrition of higher plants. New York: Academic Press/Harcourt Brace & Company; 1995.

    Google Scholar 

  8. Pandey N, Pathak GC, Sharma CP. Zinc is critically required for pollen function and fertilisation in lentil. J Trace Elem Med Biol. 2006;20:89–96. https://doi.org/10.1016/j.jtemb.2005.09.006.

  9. Smith SE, Read D. Mycorrhizal symbiosis. Oxford: Academic Press; 2008.

    Google Scholar 

  10. Watts-Williams SJ, Gill AR, Jewell N, Brien CJ, Berger B, Tran BT, Cavagnaro TR. Enhancement of sorghum grain yield and nutrition: a role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. Plants People Planet. 2022;4:143–56.

    Google Scholar 

  11. Watts-Williams SJ, Patti AF, Cavagnaro TR. Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil. 2013;371:299–312.

    Article  CAS  Google Scholar 

  12. Bieleski RL. Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol. 1973;24:225–52.

    Article  CAS  Google Scholar 

  13. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, et al. Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N, editors. Mycorrhiza. Cham: Springer; 2017. p. 1–7. https://doi.org/10.1007/978-3-319-53064-2_1.

    Chapter  Google Scholar 

  14. Smith SE, Jakobsen I, Grnlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011;156:1050–7. https://doi.org/10.1104/pp.111.174581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and develo** reliable means of diagnosis. Plant Soil. 2009;320:37–77. https://doi.org/10.1007/s11104-008-9877-9.

  16. Duponnois R, Ouahmane L, Kane A, Thioulouse J, Hafidi M, Boumezzough A, et al. Nurse shrubs increased the early growth of Cupressus seedlings by enhancing belowground mutualism and soil microbial activity. Soil Biol Biochem. 2011;43:2160–8. https://doi.org/10.1016/j.soilbio.2011.06.020.

  17. Anderson R, Keshwani D, Guru A, Yang H, Irmak S, Subbiah J. An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models. Environ Model Softw. 2018;108:40–50. https://doi.org/10.1016/j.envsoft.2018.07.004.

  18. Diagne N, Ndour M, Djighaly PI, Ngom D, Ngom MCN, Ndong G, et al. Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front Sustain Food Syst. 2020;4:266. https://doi.org/10.3389/fsufs.2020.601004.

  19. Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, et al. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs. direct root exudation. New Phytol. 2015;205:1537–51. https://doi.org/10.1111/nph.13138.

  20. Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 2017;356:1175–8. https://doi.org/10.1126/science.aan0081.

  21. Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife. 2017;6:e29107. https://doi.org/10.7554/eLife.29107.002.

  22. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2012;193:970–84. https://doi.org/10.1111/j.1469-8137.2011.03962.x.

  23. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. 2013;23:515–31. https://doi.org/10.1007/s00572-013-0486-y.

  24. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 2005;165(1):273–83.

    Google Scholar 

  25. Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F. Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol. 2001;151:145–54.

    Google Scholar 

  26. Cui XC, Hu JL, Lin XG, Wang FY, Chen RR, Wang JH, Zhu JG. Arbuscular mycorrhizal fungi alleviate ozone stress on nitrogen nutrition of field wheat. J Agric Sci Technol. 2013;15:1043–52. https://jast.modares.ac.ir/article-23-8154-en.pdf

    CAS  Google Scholar 

  27. Watts-Williams SJ, Tyerman SD, Cavagnaro TR. The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: linking plant physiology and gene expression. Plant Soil. 2017;420:375–88. https://doi.org/10.1007/s11104-017-3409-4.

    Article  CAS  Google Scholar 

  28. Meng L, Zhang A, Wang F, Han X, Wang D, Li S. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercrop** system. Front Plant Sci. 2015;6:339.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Solaiman MZ, Hirata H. Responses of directly seeded wetland rice to arbuscular mycorrhizal fungi inoculation. J Plant Nut. 1997;20:1479–87.

    Article  CAS  Google Scholar 

  30. Nakmee PS, Techapinyawat S, Ngamprasit S. Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agric Nat Resour. 2016;50:173–8.

    CAS  Google Scholar 

  31. Zhang Q, Gong M, Yuan J, Hou Y, Zhang H, Wang Y, Hou X. Dark septate endophyte improves drought tolerance in sorghum. Int J Agric Biol. 2017;19:53–60.

    Article  CAS  Google Scholar 

  32. Zhang X, Wang L, Ma F, Yang J, Su M. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). J Sci Food Agric. 2017;97:2919–25.

    Article  CAS  PubMed  Google Scholar 

  33. Mei L, Yang X, Cao H, Zhang T, Guo J. Arbuscular mycorrhizal fungi alter plant and soil C: N: P stoichiometries under warming and nitrogen input in a semiarid meadow of China. Int J Environ Res Public Health. 2019;16:397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ven A, Verlinden M, Verbruggen E, Vicca S. Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake. Funct Ecol. 2019;33:2215–25. https://doi.org/10.1111/1365-2435.13452.

    Article  Google Scholar 

  35. Frew A, Powell JR, Glauser G, Bennett AE, Johnson SN. Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations. Soil Biol Biochem. 2018;126:123–32. https://doi.org/10.1016/j.soilbio.2018.08.019.

    Article  CAS  Google Scholar 

  36. Smith SE, Manjarrez M, Stonor R, McNeill A, Smith FA. Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment, shown by tracking with radioactive phosphorus. Appl Soil Ecol. 2015;96:68–74.

    Article  Google Scholar 

  37. Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep. 2017;7:4686. https://doi.org/10.1038/s41598-017-04959-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Almagrabi OA, Abdelmoneim TS. Using of arbuscular mycorrhizal fungi to reduce the deficiency effect of phosphorous fertilization on maize plants (Zea mays L.). Life Sci J. 2012;9:1648–54.

    Google Scholar 

  39. Chan WF, Li H, Wu FY, Wu SC, Wong MH. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater. 2013;262:1116–22.

    Article  CAS  PubMed  Google Scholar 

  40. Abdullahi R, Sheriff HH, Buba A. Effect of biofertilizer and organic manure on growth and nutrients content of pearl millet. ARPN J Agric Biol Sci. 2014;9:351–5.

    Google Scholar 

  41. Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma. 2004;223:183–9. https://doi.org/10.1007/s00709-003-0027-1.

    Article  CAS  PubMed  Google Scholar 

  42. Han X, Zhou Y, Li Y, Ren W, Liu K, Zhang W, Zhang H, Tang M. LbKAT3 may assist in mycorrhizal potassium uptake, and overexpression of LbKAT3 may promote potassium, phosphorus, and water transport from arbuscular mycorrhizal fungi to the host plant. Front Plant Sci. 2023;14:1161220. https://doi.org/10.3389/fpls.2023.1161220.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Liu J, Liu J, et al. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiol. 2019;180(1):465–79. https://doi.org/10.1104/pp.18.01533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tarafdar JC, Rao AV. Response of arid legumes to VAM fungal inoculation. Symbiosis. 1997;22:265–74.

    Google Scholar 

  45. Yuan J, Shi K, Zhou X, Wang L, Xu C, Zhang H, Zhu G, Si C, Wang J, Zhang Y. Interactive impact of potassium and arbuscular mycorrhizal fungi on the root morphology and nutrient uptake of sweet potato (Ipomoea batatas L.). Front Microbiol. 2023;13:1075957. https://doi.org/10.3389/fmicb.2022.1075957.

  46. Aliasgharzad N, Shirmohamadi E, Oustan S. Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition. Soil Environ. 2009;28:119–23.

    Google Scholar 

  47. **ao J, Hu C, Chen Y, Yang B, Hua J. Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Sci Hortic. 2014;177:14–20. https://doi.org/10.1016/j.scienta.2014.07.016.

    Article  CAS  Google Scholar 

  48. Wang J, Fu Z, Ren Q, Zhu L, Lin J, Zhang J, Cheng X, Ma J, Yue J. Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) Makino seedlings under salt stress. Forests. 2019;10(2):186. https://doi.org/10.3390/f10020186.

    Article  Google Scholar 

  49. Liu J, Fang L, Pei W, Li F, Zhao J. Effects of magnesium application on the arbuscular mycorrhizal symbiosis in tomato. Symbiosis. 2023;89:73–82. https://doi.org/10.1007/s13199-022-00862-z.

    Article  CAS  Google Scholar 

  50. Hashem A, Alqarawi A, Ramalingam R, Al-arjani A, Aldehaish H, Dilfuza E, Abd Allah EF. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci. 2018;25(6):1102–14. https://doi.org/10.1016/j.sjbs.2018.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cui L, Guo F, Zhang J-l, Yang S, Meng J-j, Geng Y, Wang Q, Li X-G, Wan S-b. Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut (Arachis hypogaea L.) seedlings under continuous crop**. J Integr Agric. 2019;18:407–16. https://doi.org/10.1016/S2095-3119(19)62611-0.

    Article  CAS  Google Scholar 

  52. Fu W, Yan M, Zhao L, Zeng X, Cai B, Qu S, Wang S. Inoculation with arbuscular mycorrhizal fungi increase calcium uptake in Malus robusta. Sci Hortic. 2023;321:112295. https://doi.org/10.1016/j.scienta.2023.112295.

    Article  CAS  Google Scholar 

  53. Bermudezi M, Azcon R. Calcium uptake by alfalfa as modified by a mycorrhizal fungus and liming. Symbiosis. 1996;20:175–84.

    Google Scholar 

  54. Shi Z, Zhang J, Lu S, Li Y, Wang F. Arbuscular mycorrhizal fungi improve the performance of sweet sorghum grown in a Mo-contaminated soil. J Fungi. 2020;6(2):44. https://doi.org/10.3390/jof6020044.

    Article  CAS  Google Scholar 

  55. Blanke V, Wagner M, Renker C, Lippert H, Michulitz M, Kuhn AJ, Buscot F. Arbuscular mycorrhizas in phosphate-polluted soil: interrelations between root colonization and nitrogen. Plant Soil. 2011;343:379–92. https://doi.org/10.1007/s11104-011-0727-9.

    Article  CAS  Google Scholar 

  56. Wright SF, Frankee-Snyder M, Morton JB. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil. 1996;181:193–203.

    Article  CAS  Google Scholar 

  57. Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1996;198:97–107. https://doi.org/10.1023/A:1004347701584.

  58. Pohanka M, Vlcek V. Immunoassay of glomalin by quartz crystal microbalance biosensor containing iron oxide nanoparticles. Int J Anal Chem. 2020;2020:8844151. https://doi.org/10.1155/2020/8844151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burri K, Groke C, Graf F. Mycorrhizal fungi protect the soil form wind erosion: a wind tunnel study. Land Degrad Dev. 2011;24:292–385.

    Google Scholar 

  60. Lu X, Lu X, Lio Y. Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Front Microbiol. 2018;9:2986.

    Google Scholar 

  61. Wilkes TI, Warner DJ, Edmonds-Brown V, Davies KG, Denholm I. Zero tillage systems conserve arbuscular mycorrhizal fungi, enhancing soil glomalin and water stable aggregates with implications for soil stability. Soil Syst. 2021;5:4.

    Article  CAS  Google Scholar 

  62. Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS One. 2020;15:e0230615.

    Google Scholar 

  63. Shafi MI, Adnan M, Fahad S, Wahid F, Khan A, Yue Z, Danish S, Zafar-Ul-Hye M, Brtnicky M, Datta R. Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy. 2020;10:1224. https://doi.org/10.3390/agronomy10091224.

  64. Shah AA, Bibi F, Hussain I, Yasin NA, Akram W, Tahir MS, Ali HM, Salem MZM, Siddiqui MH, Danish S, Fahad S, Datta R. Synergistic effect of Bacillus thuringiensis IAGS 199 and putrescine on alleviating cadmium-induced phytotoxicity in Capsicum annum. Plants. 2020;9:151. https://doi.org/10.3390/plants9111512.

  65. Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P. At the root of the wood wide web. Plant Signal Behav. 2006;1:1–5. https://doi.org/10.4161/psb.1.1.2277.

  66. Alqarawi AA, Abd-Allah EF, Hashem A. Alleviation of saltinduced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact. 2014;9(1):802–10. https://doi.org/10.1080/17429145.2014.949886.

  67. Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA, Sheikh TA, Reddy MS, El Enshasy H, Gafur A. Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability. 2021;13:2856.

    Google Scholar 

  68. Sharma S, Prasad R, Varma A, Sharma AK. Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol. 2017;11(4):192–202. https://doi.org/10.3923/ajppaj.2017.199.202.

  69. Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress—a meta-analysis. Front Plant Sci. 2019;10:457. https://doi.org/10.3389/fpls.2019.00457.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bauddh K, Singh RP. Growth: tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf. 2012;85:13–22. https://doi.org/10.1016/j.ecoenv.2012.08.019.

  71. Symanczik S, Lehmann MF, Wiemken A, Boller T, Courty P-E. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza. 2018;28:779–85.

    Google Scholar 

  72. Amerian MR, Stewart WS, Griffiths H. Effect of two species of arbuscular mycorrhizal fungi on growth, assimilation and leaf water relations in maize (Zea mays). Asp Appl Biol. 2001;63:71–6.

    Google Scholar 

  73. Ghorchiani M, Etesami H, Alikhani HA. Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric Ecosyst Environ. 2018;258:59–70. https://doi.org/10.1016/j.agee.2018.02.016.

    Article  CAS  Google Scholar 

  74. Beltrano J, Ronco M. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Braz J Plant Physiol. 2008;20:29–37. https://doi.org/10.1590/S1677-04202008000100004.

    Article  CAS  Google Scholar 

  75. Pavithra D, Yapa N. Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Ground Water Sustain Dev. 2018;7:490–4. https://doi.org/10.1016/j.gsd.2018.03.005.

    Article  Google Scholar 

  76. Pal A, Pandey S. Role of arbuscular mycorrhizal fungi on plant growth and reclamation of barren soil with wheat (Triticum aestivum L.) crop. Int J Soil Sci. 2016;12:25–31. https://doi.org/10.3923/ijss.2017.25.31.

    Article  CAS  Google Scholar 

  77. Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato Solanum lycopersicum L. plants by modifying the hormonal balance. J Plant Physiol. 2017;214:134–44. https://doi.org/10.1016/j.jplph.2017.04.012.

    Article  CAS  PubMed  Google Scholar 

  78. Ibrahim AH, Abdel-Fattah GM, Eman FM, Abd El-Aziz MH, Shohr AE. Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. New Phytol. 2011;51:261–76.

    Google Scholar 

  79. Hajiboland R, Dashtebani F, Aliasgharzad N. Physiological responses of halophytic C4 grass, Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica. 2015;53(4):572–84. https://doi.org/10.1007/s11099-015-0131-4.

    Article  CAS  Google Scholar 

  80. Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato Solanum lycopersicum L. plants. Plant Soil. 2010;331:313–27. https://doi.org/10.1007/s11104-009-0255-z.

    Article  CAS  Google Scholar 

  81. Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol. 2015;185:75–83.

    Article  CAS  PubMed  Google Scholar 

  82. Abdel-Fattah GM, Asrar AA. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol Plant. 2012;34:267–77. https://doi.org/10.1007/s11738-011-0825-6.

    Article  CAS  Google Scholar 

  83. Watts-Williams M, Ardakani MR, Rejali F, Zaefarian F, Teimouri S, Noormohammadi G, Miransari M. Uptake of heavy metals by mycorrhizal barley (Hordeum vulgare L.). J Plant Nutr. 2015;38:904–19.

    Article  Google Scholar 

  84. Merlos MA, Zitka O, Vojtech A, Azcón-Aguilar C, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance. Plant Sci. 2016;253:68–76.

    Article  CAS  PubMed  Google Scholar 

  85. Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health. 2007;29:473–81. https://doi.org/10.1007/s10653-007-9116-y.

  86. Calvo-Polanco M, Sanchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC, et al. Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot. 2016;131:47–57. https://doi.org/10.1016/j.envexpbot.2016.06.015.

  87. Abdelhameed RE, Metwally RA. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int J Phytoremediation. 2019;21(7):663–71. https://doi.org/10.1080/15226514.2018.1556584.

    Article  CAS  PubMed  Google Scholar 

  88. Garg N, Singh S. Arbuscular mycorrhiza Rhizophagus irregularis, and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan, L. Millsp. (pigeon pea) genotypes under cadmium and zinc stress. J Plant Growth Regul. 2017;37:1–18. https://doi.org/10.1007/s00344-017-9708-4.

    Article  CAS  Google Scholar 

  89. Cabral C, Sabine R, Ivanka T, Bernd W. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil. 2016;408(1–2):385–99. https://doi.org/10.1007/s11104-016-2942-x.

    Article  CAS  Google Scholar 

  90. Mathur S, Sharma MP, Jajoo A. Improved photosynthetic efficacy of maize Zea mays plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B. 2016;180:149–54. https://doi.org/10.1016/j.jphotobiol.2018.02.002.

    Article  CAS  Google Scholar 

  91. Mathur S, Agnihotri R, Sharma MP, Reddy VR, Jajoo A. Effect of high-temperature stress on plant physiological traits and mycorrhizal symbiosis in maize plants. J Fungi (Basel). 2021;7(10):867. https://doi.org/10.3390/jof7100867.

    Article  CAS  PubMed  Google Scholar 

  92. Hajiboland R, Joudmand A, Aliasgharzad N, Tolrá R, Poschenrieder C. Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop Pasture Sci. 2019;70:218–33. https://doi.org/10.1071/CP18385.

    Article  CAS  Google Scholar 

  93. Maya MA, Matsubara Y. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza. 2013;23:381–90. https://doi.org/10.1007/s00572-013-0477-z.

    Article  CAS  PubMed  Google Scholar 

  94. Duc NH, Csintalan Z, Posta K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem. 2018;132:297–307. https://doi.org/10.1016/j.plaphy.2018.09.011.

  95. Lehmann A, Rillig MC. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—a meta-analysis. Soil Biol Biochem. 2015;81:147–58. https://doi.org/10.1016/j.soilbio.2014.11.013.

  96. Zhang T, Hub Y, Zhang K, Tian C, Gu J. Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crop Prod. 2018;117:13–9. https://doi.org/10.1016/j.indcrop.2018.02.087.

  97. Ansori A, Gholami A. Improved nutrient uptake and growth of maize in response to inoculation with Thiobacillus and mycorrhiza on an alkaline soil. Commun Soil Sci Plant Anal. 2015;46:2111–26. https://doi.org/10.1080/00103624.2015.1048251.

  98. Samreen T, Humaira, Shah HU, Ullah S, Javid M. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arab J Chem. 2017;10:S1802–7. https://doi.org/10.1016/j.arabjc.2013.07.005.

  99. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:12–322. https://doi.org/10.1104/pp.106.077073.

  100. Roychoudhury A, Basu S, Sengupta DN. Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant. 2012;34:835–47. https://doi.org/10.1007/s11738-011-0881-y.

    Article  CAS  Google Scholar 

  101. Dietz KJ, Turkan I, Krieger-Liszkay A. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 2016;171:1541–50. https://doi.org/10.1104/pp.16.00375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Foyer C, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005;28:1056–71. https://doi.org/10.1111/j.1365-3040.2005.01327.x.

  103. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–67. https://doi.org/10.1111/j.1365-3040.2009.02041.x.

  104. Cakmak I. Tansley review no. 111 possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146:185–205.

    Google Scholar 

  105. Auld DS. The ins and outs of biological zinc sites. Biometals. 2009;22(1):141–8. https://doi.org/10.1007/s10534-008-9184-1.

  106. Patel K, Kumar A, Durani S. Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures. Biochim Biophys Acta. 2007;1774:1247–53. https://doi.org/10.1016/j.bbapap.2007.07.010.

  107. Mendoza-Cózatl DG, Moreno-Sánchez R. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol. 2006;238:919–36. https://doi.org/10.1016/j.jtbi.2005.07.003.

  108. Hafeez B. Role of zinc in plant nutrition—a review. Am J Exp Agric. 2013;3:374–91. https://doi.org/10.9734/ajea/2013/2746.

  109. Amiri A, Baninasab B, Ghobadi C, Khoshgoftarmanesh AH. Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress. Photosynthetica. 2016;54:267–74. https://doi.org/10.1007/s11099-016-0078-0.

  110. Kumar D, Dhar S, Kumar S, Meena DC, Meena RB. Effect of zinc application on yield attributes and yield of maize and wheat in maize-wheat crop** system. Int J Curr Microbiol Appl Sci. 2019;8:1931–41. https://doi.org/10.20546/ijcmas.2019.801.203.

  111. Khatun MA, Hossain MM, Bari MA, Abdullahil KM, Parvez MS, Alam MF, Kabir AH. Zinc deficiency tolerance in maize is associated with the upregulation of Zn transporter genes and antioxidant activities. Plant Biol. 2018;20:765–70. https://doi.org/10.1111/plb.12837.

  112. Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E. Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorhizal. Plant Soil. 2007;290(1):283–91. https://doi.org/10.1007/s11104-006-9160-x.

    Article  CAS  Google Scholar 

  113. Kothari SK, Marschner H, Romheld V. Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil. 1991;131:177–85.

    Article  CAS  Google Scholar 

  114. Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 1994;159:89–102.

    Article  CAS  Google Scholar 

  115. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge: Academic; 1997.

    Google Scholar 

  116. Ortas I, Ortakei D, Kaya Z, Çinar A, Önelge N. Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. J Plant Nutr. 2002;26:1263–79.

    Google Scholar 

  117. Nguyen TD, Cavagnaro TR, Watts-Williams SJ. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Rep. 2019;9:1–13.

    Google Scholar 

  118. Watts-Williams SJ, Cavagnaro TR. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci. 2018;274:163–70. https://doi.org/10.1016/j.plantsci.2018.05.015.

    Article  CAS  PubMed  Google Scholar 

  119. Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol. 2017;8:2516. https://doi.org/10.3389/fmicb.2017.02516.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Liese R, Lübbe T, Albers NW, Meier IC. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol. 2018;38:83–95. https://doi.org/10.1093/treephys/tpx131.

  121. Pellegrino E, Opik M, Bonari E, Ercoli L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem. 2015;84:210–7. https://doi.org/10.1016/j.soilbio.2015.02.020.

  122. Ma X, Luo W, Li J, Wu F. Arbuscular mycorrhizal fungi increase both concentrations and bioavailability of Zn in wheat (Triticum aestivum L) grain on Zn-spiked soils. Appl Soil Ecol. 2019;135:91–7. https://doi.org/10.1016/j.apsoil.2018.11.007.

    Article  Google Scholar 

  123. Ercoli L, Schüßler A, Arduini I, et al. Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant Soil. 2017;419:153–67. https://doi.org/10.1007/s11104-017-3319-5.

  124. Wang MY, Christie P, **ao ZY, Qin CP, Wang P, Liu JF, **e YC, **a RX. Arbuscular mycorrhizal enhancement of iron concentration by Poncirus trifoliata L. Raf and Citrus reticulata Blanco grown on sand medium under different pH. Biol Fertil Soils. 2008;45(1):65–72. https://doi.org/10.1007/s00374-008-0290-6.

  125. Clark RB, Zeto SK. Iron acquisition by mycorrhizal maize grown on alkaline soil. J Plant Nutr. 1996;19(2):247–64. https://doi.org/10.1080/01904169609365120.

    Article  CAS  Google Scholar 

  126. Caris C, Hördt W, Hawkins HJ, et al. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza. 1998;8:35–9. https://doi.org/10.1007/s005720050208.

    Article  CAS  Google Scholar 

  127. Rahman MA, Parvin M, Das U, Ela EJ, Lee SH, Lee KW, Kabir AH. Arbuscular mycorrhizal symbiosis mitigates iron (Fe)-deficiency retardation in alfalfa (Medicago sativa L.) through the enhancement of Fe accumulation and sulfur-assisted antioxidant defense. Int J Mol Sci. 2020;21(6):2219. https://doi.org/10.3390/ijms21062219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kabir AH, Debnatha T, Das U, Prity SA, Ariful Haque M, Motiur Rahman M, Parvez S. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Plant Physiol Biochem. 2020;150:254–62. https://doi.org/10.1016/j.plaphy.2020.03.010.

    Article  CAS  PubMed  Google Scholar 

  129. Rahimi S, Baninasab B, Talebi M, Gholami M, Zarei M. Arbuscular mycorrhizal fungi inoculation improves iron deficiency in quince via alterations in host root phenolic compounds and expression of genes. Sci Hortic. 2021;285:110165. https://doi.org/10.1016/j.scienta.2021.110165.

    Article  CAS  Google Scholar 

  130. Long J, Chen B, Zhu Y, et al. Mycorrhiza and iron tailings synergistically enhance maize resistance to arsenic on medium arsenic-polluted soils through increasing phosphorus and iron uptake. Bull Environ Contam Toxicol. 2021;107:1155–60. https://doi.org/10.1007/s00128-021-03329-x.

    Article  CAS  PubMed  Google Scholar 

  131. Bürkert B, Robson A. 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by vesicular arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem. 1994;26:1117–24.

    Article  Google Scholar 

  132. Jansa J, Mozafar A, Frossard E. Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie. 2003;23:481–8. https://doi.org/10.1051/agro:2003013.

    Article  CAS  Google Scholar 

  133. Mehravaran H, Mozafar A, Frossard E. Uptake and partitioning of 32P and 65Zn by white clover as affected by eleven isolates of mycorrhizal fungi. J Plant Nutr. 2000;23:1385–95.

    Article  CAS  Google Scholar 

  134. Cooper KM, Tinker PB. Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas. II Uptake and translocation of phosphorus, zinc and sulphur. New Phytol. 1978;81:43–52.

    Google Scholar 

  135. Sharma AK, Sricastava PC, Johri BN. Multiphasic zinc uptake system in mycorrhizal and non-mycorrhizal roots of French bean (Phaseolus vulfaris L.). Curr Sci. 1999;76:228–30.

    Google Scholar 

  136. Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) growth in soil at different P and micronutrient levels. Mycorrhiza. 2000;9:331–6.

    Google Scholar 

  137. Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM. Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil. 2006;282:209–25.

    Article  CAS  Google Scholar 

  138. Ryan MH, Angus JF. Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil. 2003;250:225–39.

    Google Scholar 

  139. Sorensen JN, Larsen J, Jakobsen I. Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant Soil. 2005;273:101–14.

    Google Scholar 

  140. Thompson JP. Decline of vesicular–arbuscular mycorrhizae in long fallow disorder of field crops and its expression in deficiency of sunflower. Aust J Agric Res. 1987;38:847–67.

    Google Scholar 

  141. Thompson JP. Correction of dual phosphorus and zinc deficiencies on Linseed (Linum usitatissimum L.) with cultures of vesicular–arbuscular mycorrhizal fungi. Soil Biol Biochem. 1996;28:941–51.

    Google Scholar 

  142. Cavagnaro TR, Jackson LE. Isotopic fractionation of zinc in field grown tomato. Can J Bot. 2007;85:230–5.

    Google Scholar 

  143. Cavagnaro TR, Jackson LE, Scow KM, Hristova KR. Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb Ecol. 2007;54:618–26.

    Google Scholar 

  144. Barker SJ, Stummer B, Gao L, Dispain I, O’Connor PJ, Smith SE. A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization, isolation and preliminary characterisation. Plant J. 1998;15:791–7.

    Google Scholar 

  145. Vyas TK, Vala AK. The impact of magnetic nanoparticles on microbial community structure and function in rhizospheric soils. In: Thomas S, Nochehdehi AR, editors. Magnetic hybrid nanoalloys and their nanocomposites. Cham: Springer; 2022. https://doi.org/10.1007/978-3-030-90948-2_44.

  146. Kabir AH, Paltridge NG, Roessner U, Stangoulis JCR. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Physiol Plant. 2013;147:381–95. https://doi.org/10.1111/j.1399-3054.2012.01682.x.

    Article  CAS  PubMed  Google Scholar 

  147. Wang M-Y, **a R-X, Hu L-M, Dong T, Wu Q-S. Arbuscular mycorrhizal fungi alleviate iron deficient chlorosis in Poncirus trifoliata L. Raf under calcium bicarbonate stress. J Hortic Sci Biotechnol. 2015;82:776–80.

    Article  Google Scholar 

  148. Zhang S, Lehmann A, Zheng W, You Z, Rillig MC. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 2019;222:543–55.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang X, Zhang D, Sun W, Wang T. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int J Mol Sci. 2019;20:2424.

    Article  PubMed  PubMed Central  Google Scholar 

  150. M’sehli W, Jellali N, Dell’Orto M, Abdelly C, Zocchi G, Gharsalli M. Responses of two lines of Medicago ciliaris to Fe deficiency under saline conditions. Plant Growth Regul. 2011;64:221–30.

    Article  Google Scholar 

  151. Kabir AH, Paltridge NG, Stangoulis J. Role of sulphur conferring differential tolerance to iron deficiency in Pisum sativum. Biologia. 2015;70:922–8. https://doi.org/10.1515/biolog-2015-0104.

    Article  CAS  Google Scholar 

  152. Kabir AH, Rahman MM, Haider SA, Paul NK. Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environ Exp Bot. 2015;112:16–26. https://doi.org/10.1016/j.envexpbot.2014.11.011.

    Article  CAS  Google Scholar 

  153. Młodzi’nska E. Alteration of plasma membrane H+-ATPase in cucumber roots under different iron nutrition. Acta Physiol Plant. 2012;34:2125–33.

    Article  Google Scholar 

  154. Kabir AH, Paltridge NG, Able AJ, Paull JG, Stangoulis JCR. Natural variation for Fe-deficiency is associated with upregulation of strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Planta. 2012;235:1409–19. https://doi.org/10.1007/s00425-011-1583-9.

    Article  CAS  PubMed  Google Scholar 

  155. Lombardo L, Palese AM, Grasso F, Duffy DH III, Bati CB, **loyannis C. Mechanical tillage diversely affects glomalin content, water stable aggregates and AM fungal community in the soil profiles of two differently managed olive orchards. Biomol Ther. 2019;9:639.

    CAS  Google Scholar 

  156. Sharifi Z, Azadi N, Rahimi S, Certini G. The response of glomalin-related soil proteins to fire or tillage. Geoderma. 2018;329:65–72.

    Article  CAS  Google Scholar 

  157. Palmer C, Guerinot ML. A question of balance: facing the challenges of Cu, Fe, and Zn homeostasis. Nat Chem Biol. 2009;5:333–40.

    Google Scholar 

  158. Blume HP, Brümmer GW, Horn R, Kandeler E, Kogel-Knabner I, Kretzschmar R, Stahr K, Wilke BMA. Scheffer/Schachtschabel: Lehrbuch der Bodenkunde. 15th ed. Berlin: Spektrum Akademischer Verlag; 2009.

    Google Scholar 

  159. Hell R, Stephan UW. Iron uptake, trafficking and homeostasis in plants. Planta. 2003;216:541–51.

    Google Scholar 

  160. Kim SA, Guerinot ML. Mining iron: iron uptake and transport in plants. FEBS Lett. 2007;581:2273–80.

    Google Scholar 

  161. Jeong J, Guerinot ML. Homing in on iron homeostasis in plants. Trends Plant Sci. 2009;14:280–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vyas, T.K., Bardhan, K., Singh, S. (2024). The Role of Arbuscular Mycorrhiza Fungi in Zinc and Iron Nutrition of Crops. In: Parihar, M., Rakshit, A., Adholeya, A., Chen, Y. (eds) Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Nutrient and Crop Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0300-5_8

Download citation

Publish with us

Policies and ethics

Navigation