Study on the Influencing Factors of Pre-CO2 Blowback After Pressure

  • Conference paper
  • First Online:
Proceedings of the International Field Exploration and Development Conference 2023 (IFEDC 2023)

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Included in the following conference series:

  • 166 Accesses

Abstract

This paper studies the main control factor analysis of shale oil fracturing fluid backflow, and calculates and sorts the weight of each influence factor under 285 samples in west 233 and Zhuang 183 blocks by grey correlation method, the main control factors of shale oil fracturing fluid reflow are segment number, sand ratio and volume of reflow, and the correlation between influencing factors and reflow rate is established based on fuzzy set theory. Taking the construction parameters of Huxx well as an example, a pre-co2 fracturing model of shale oil is established, based on the effects of different CO2 injection rate, pressure difference and muffle well time on slippage water reflow rate, CO2 reflow rate and cumulative oil production, the optimal injection rate of CO2: the injection rate of subsequent slip water (including sand-carrying fluid, displacement fluid, etc.) should be more than 20%, the optimal shut-in time is 15 days, and the optimal bottom hole flowing pressure is 8 mpa.

Copyright 2023, IFEDC Organizing Committee.

This paper was prepared for presentation at the 2023 International Field Exploration and Development Conference in Wuhan, China, 20–22 September 2023.

This paper was selected for presentation by the IFEDC Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the IFEDC Technical Team and are subject to correction by the author(s). The material does not necessarily reflect any position of the IFEDC Technical Committee its members. Papers presented at the Conference are subject to publication review by Professional Team of IFEDC Technical Committee. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of IFEDC Organizing Committee is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of IFEDC. Contact email: email: paper@ifedc.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. André, L., Audigane, P., Azaroual, M., et al.: Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Conversion Manage. 48(6), 1782–1797 (2007)

    Google Scholar 

  2. Shao, H., Ray, J.R., Jun, Y.S.: Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions. Environ. Sci. Technol. 44(15), 5999–6005 (2010)

    Article  Google Scholar 

  3. Kampman, N., Bickle, M., Wigley, M., et al.: Fluid flow and CO2–fluid–mineral interactions during CO2–storage in sedimentary basins. Chem. Geol. 369, 22–50 (2014)

    Article  Google Scholar 

  4. Zheng, H., Feng, X.T., Pan, P.Z.: Experimental investigation of sandstone properties under CO2–NaCl solution-rock interactions. Int. J. Greenhouse Gas Control 37, 451–470 (2015)

    Article  Google Scholar 

  5. Gao, Y., Liu, L., Qu, X., et al.: Interaction mechanism of CO2 and sandstone and formation of authigenic mineral association. **njiang Petroleum Geol. 28(5), 579–584 (2007)

    Google Scholar 

  6. Bertier, P., Swennen, R., Laenen, B., et al.: Experimental identification of CO2–water–rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium). J. Geochem. Expl. 89(1–3), 0–14 (2006)

    Google Scholar 

  7. Fischer, S., Liebscher, A., Wandrey, M.: CO2–brine–rock interaction — First results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Chemie der Erde - Geochemistry - Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology 70(supp-S3), 0–164 (2010)

    Google Scholar 

  8. Lu, J., Kharaka, Y.K., Thordsen, J.J., et al.: CO2–rock–brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, USA. Chem. Geol. 291, 269–277 (2012)

    Article  Google Scholar 

  9. Lamy-Chappuis, B., Angus, D., Fisher, Q., et al.: Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophys. Res. Lett.. Res. Lett. 41(2), 399–406 (2014)

    Article  Google Scholar 

  10. Zheng, H., Feng, X.T., Pan, P.Z.: Experimental investigation of sandstone properties under CO2–NaCl solution-rock interactions. Int. J. Greenhouse Gas Control 37, 451–470 (2015)

    Article  Google Scholar 

  11. Kaszuba, J.P., Janecky, D.R., Snow, M.G.: Carbon dioxide reaction processes in a model brine aquifer at 200 C and 200 bars: implications for geologic sequestration of carbon. Appl. Geochem. 18(7), 1065–1080 (2003)

    Article  Google Scholar 

  12. Kaszuba, J.P., Janecky, D.R., Snow, M.G.: Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository. Chem. Geol. 217(3–4), 277–293 (2005)

    Article  Google Scholar 

  13. Lu, P., Fu, Q., Seyfried, W.E., et al.: Navajo Sandstone–brine–CO2 interaction: implications for geological carbon sequestration. Environ. Earth Sci. 62(1), 101–118 (2011)

    Article  Google Scholar 

  14. Sayegh, S.G., Krause, F.F., Girard, M., et al.: Rock/fluid interactions of carbonated brines in a sandstone reservoir: Pembina Cardium, Alberta, Canada. SPE Form. Eval. 5(04), 399–405 (1990)

    Article  Google Scholar 

  15. Shiraki, R., Dunn, T.L.: Experimental study on water–rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl. Geochem. 15(3), 265–279 (2000)

    Article  Google Scholar 

  16. Emberley, S., Hutcheon, I., Shevalier, M., et al.: Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. Energy 29(9–10), 1393–1401 (2004)

    Article  Google Scholar 

  17. Kharaka, Y.K., Cole, D.R., Hovorka, S.D., et al.: Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology 34(7), 577 (2006)

    Article  Google Scholar 

  18. Wigand, M., Carey, J.W., Schütt, H., et al.: Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl. Geochem. 23(9), 0–2745 (2008)

    Google Scholar 

  19. Farquhar, S.M., Pearce, J.K., Dawson, G.K.W., et al.: A fresh approach to investigating CO2 storage: experimental CO2–water–rock interactions in a low-salinity reservoir system. Chem. Geol. 399, 98–122 (2015)

    Article  Google Scholar 

  20. Cao, P., Karpyn, Z.T., Li, L.: The role of host rock properties in determining potential CO2 migration pathways. Int. J. Greenhouse Gas Control 45, 18–26 (2016)

    Article  Google Scholar 

  21. Lamy-Chappuis, B., Angus, D., Fisher, Q., et al.: Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophys. Res. Lett.. Res. Lett. 41(2), 399–406 (2014)

    Article  Google Scholar 

  22. Rathnaweera, T.D., Ranjith, P.G., Perera, M.S.A.: Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers. Sci. Rep. 6(1), 19362 (2016)

    Article  Google Scholar 

  23. Gunter, W.D., Perkins, E.H., Hutcheon, I.: Aquifer disposal of acid gases: modelling of water–rock reactions for trap** of acid wastes. Appl. Geochem. 15(8), 1085–1095 (2000)

    Article  Google Scholar 

  24. Xu, T., Apps, J.A., Pruess, K.: Numerical simulation of CO2 disposal by mineral trap** in deep aquifers. Appl. Geochem. 19(6), 917–936 (2004)

    Article  Google Scholar 

  25. Kaszuba, J.P., Janecky, D.R., Snow, M.G.: Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository. Chem. Geol. 217(3–4), 277–293 (2005)

    Article  Google Scholar 

  26. Marbler, H., Erickson, K.P., Schmidt, M., et al.: Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs. Environ. Earth Sci. 69(6), 1981–1998 (2013)

    Article  Google Scholar 

  27. Rochelle, C.A., Czernichowski-Lauriol, I., Milodowski, A.E.: The iMPact of chemical reactions on CO2 storage in geological formations: a brief review. Geological Soc. London Special Publications 233(1), 87–106 (2004)

    Article  Google Scholar 

  28. Lu, P., Fu, Q., Seyfried, W.E., et al.: Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems – 2: new experiments with supercritical CO2 and implications for carbon sequestration. Appl. Geochem. 30(Complete), 75–90 (2013)

    Google Scholar 

  29. Wang, S., Zhang, W., Xu, J., et al.: Construction of carbon dioxide Heat Transfer Experimental Platform. Fluid Mach. 40(5), 71–75 (2012)

    Google Scholar 

  30. Liao, S.M., Zhao, T.S.: Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels. J. Heat Transfer 124(3), 413–420 (2002)

    Article  Google Scholar 

  31. Bae, Y.Y., Kim, H.Y.: Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes ans an annular channel. Exp. Thermal Fluid Sci. 33, 329–339 (2009)

    Article  Google Scholar 

  32. He, S., Kim, W.S., Jackson, J.D.: A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value. Appl. Therm. Eng. 28(13), 1662–1675 (2008)

    Article  Google Scholar 

  33. Bourke, P.J., Pulling, D.J., Gill, L.E., Denton, W.H.: Forced convective heat transfer to turbulent CO2 in the supercritical region. Int. J. Heat Mass Transf. 13(8), 1339–1348 (1970)

    Article  Google Scholar 

  34. Jiang, P.X., Zhang, Y., Shi, R.F.: Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube. Int. J. Heat Mass Transf. 51(11), 3052–3056 (2008)

    Article  Google Scholar 

  35. Lemmon, E.W., McLinden, M.O., Friend, D.G.: Thermaphysical properties of fluid systems. In: Linstrom, P.J., Mallard, W.G. (eds.) NIST chemistry WebBook, National Institute of Standards and Technology (2003)

    Google Scholar 

  36. Song, Z., Zheng, W., Lan, J., Bai, J., Zhou, R., Nie, J.: CO2 dry sand fracturing technology. In: Proceedings of the 2017 International Conference on Oil and Gas Field Exploration and Development (2017)

    Google Scholar 

  37. Li, Y., Xu, Z., Yuan, F., Duan, G., Jia, H., Wu, G.: Research and Application of CO2 dry fracturing technology. In: Proceedings of 2018 International Conference on Oil and Gas Field Exploration and Development (2018)

    Google Scholar 

  38. Zhang, J., Sun, X., Wu, J.: Application of CO2 dry fracturing technology in shale gas reservoir. Unconventional oil and gas 2018(05)

    Google Scholar 

  39. Wang, X., Song, Z., Wang, S.: Research and experiment of CO2 dry fracturing fluid system. Oil Drilling Prod. Technol. 36(6), 69–73 (2014)

    Google Scholar 

  40. Wang, X., Sun, X., Luo, P., Mu, J.: Progress and application of CO2 fracturing technology for unconventional oil and gas. Lithologic Reservoirs 31(2), 1–7 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-lei **a .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

**a, Yl., Gao, Y., Jia, Js. (2024). Study on the Influencing Factors of Pre-CO2 Blowback After Pressure. In: Lin, J. (eds) Proceedings of the International Field Exploration and Development Conference 2023. IFEDC 2023. Springer Series in Geomechanics and Geoengineering. Springer, Singapore. https://doi.org/10.1007/978-981-97-0268-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0268-8_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0267-1

  • Online ISBN: 978-981-97-0268-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation