Visual Field

  • Chapter
  • First Online:
Ophthalmic Diagnostics

Abstract

Visual field testing is indispensable in diagnosing and managing glaucoma. Over the past 50 years, computerized visual field testing with standard automated perimetry (SAP) has become the standard method for assessing visual function in glaucoma. SAP measures threshold sensitivity at specific test locations of the subject’s retina using white stimuli on a white background and provides a method for estimating visual field abnormalities by comparing these to a normative database. This chapter will briefly describe the historical development of the “field test” and cover important new advances in the technology, technique, and clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forster C. Vorzeigung des Perimeter. Klin Monatsbl Augenheilk. 1869;7:411–22.

    Google Scholar 

  2. Lang BT. Perimetry: the methods, means, and manner of determining the size of a field or scotoma. Br J Ophthalmol. 1920;4:489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Traquair H. An introduction to clinical Perimetry, vol. 21. London: Kimpton; 1927. p. 250.

    Google Scholar 

  4. Goldmann H. Demonstration unseres neuen Projektionskugelperimeters samt theoretischen und klinischen Bemerkung über Perimetrie [Demonstration of our new projection ball perimeter with theoretical and clinical remark about perimetry]. Ophthalmologica. 1946;111:187–92. (Germany).

    Article  CAS  PubMed  Google Scholar 

  5. Fankhauser F. Background illumination and automated perimetry. Arch Ophthalmol. 1986;104:1126.

    Article  CAS  PubMed  Google Scholar 

  6. Heijl A, Krakau CE. An automatic perimeter for glaucoma visual field screening and control. Construction and clinical cases. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;197:13–23.

    Article  CAS  PubMed  Google Scholar 

  7. Flammer J, Drance SM, Augustiny L, Funkhouser A. Quantification of glaucomatous visual field defects with automated perimetry. Invest Ophthalmol Vis Sci. 1985;26:176–81.

    CAS  PubMed  Google Scholar 

  8. Anderson DR, Patella VM. Automated static perimetry. 2nd ed. St Louis: Mosby; 1999.

    Google Scholar 

  9. Bengtsson B, Heijl A, Olsson J. Evaluation of a new threshold visual field strategy, SITA, in normal subjects. Swedish interactive thresholding algorithm. Acta Ophthalmol Scand. 1998;76:165–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bengtsson B, Heijl A. A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol. 2008;145:343–53.

    Article  PubMed  Google Scholar 

  11. Prasad S, Galetta SL. Anatomy and physiology of the afferent visual system. Handb Clin Neurol. 2011;102:3–19.

    Article  PubMed  Google Scholar 

  12. Murata H, Hirasawa H, Aoyama Y, et al. Identifying areas of the visual field important for quality of life in patients with glaucoma. PLoS One. 2013;8:e58695. https://doi.org/10.1371/journal.pone.0058695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Moraes CG, Furlanetto RL, Ritch R, Liebmann JM. A new index to monitor central visual field progression in glaucoma. Ophthalmology. 2014;121:1531–8.

    Article  PubMed  Google Scholar 

  14. Qiu A, Rosenau BJ, Greenberg AS, et al. Estimating linear cortical magnification in human primary visual cortex via dynamic programming. NeuroImage. 2006;31:125–38.

    Article  PubMed  Google Scholar 

  15. Rao A, Padhy D, Mudunuri H, et al. Central field index versus visual field index for central visual function in stable glaucoma. J Glaucoma. 2017;26:1–7.

    Article  PubMed  Google Scholar 

  16. Heijl A, Patella VM, Chong LX, et al. A new SITA perimetric threshold testing algorithm: construction and a multicenter clinical study. Am J Ophthalmol. 2019;198:154–65.

    Article  PubMed  Google Scholar 

  17. Phu J, Khuu SK, Agar A, Kalloniatis M. Clinical evaluation of Swedish interactive thresholding algorithm-faster compared with Swedish interactive thresholding algorithm-standard in normal subjects, glaucoma suspects, and patients with glaucoma. Am J Ophthalmol. 2019;208:251–64.

    Article  PubMed  Google Scholar 

  18. Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.

    Article  PubMed  Google Scholar 

  19. Traynis I, De Moraes CG, Raza AS, et al. Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field. JAMA Ophthalmol. 2014;132:291–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Moraes CG, Hood DC, Thenappan A, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124:1449–56.

    Article  PubMed  Google Scholar 

  21. Yu S, Lee GC, Callan T, et al. Comparison of SITA faster 24-2C test times to legacy SITA tests (abstract). Invest Ophthalmol Vis Sci. 2019;60:2454.

    Google Scholar 

  22. Phu J, Kalloniatis M. Ability of 24-2C and 24-2 grids in identifying central visual field defects and structure-function concordance in glaucoma and suspects. Am J Ophthalmol. 2020;219:317–31.

    Article  PubMed  Google Scholar 

  23. https://www.haag-streit.com/fileadmin/Haag-Streit_USA/Diagnostics/Visual_Field_Digest_8th_eng_.pdf. Accessed 15 June 2023.

  24. Bevers C, Blanckaert G, Van Keer K, et al. Semi-automated kinetic perimetry: comparison of the octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry. Acta Ophthalmol. 2019;97:e499–505.

    Article  PubMed  Google Scholar 

  25. “VisualFields Easy”: an iPad application as a simple tool for detecting visual field defects. Philippine J Ophthalmol. paojournal.com. Accessed 15 June 2023.

  26. Peristat: test - keep your sight. kysvision.com. Accessed 15 June 2023.

  27. Kumar H, Thulasidas M. Comparison of perimetric outcomes from Melbourne rapid fields tablet perimeter software and Humphrey field analyzer in glaucoma patients. J Ophthalmol. 2020;2020:8384509. https://doi.org/10.1155/2020/8384509.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jones PR, Campbell P, Callaghan T, et al. Glaucoma home monitoring using a tablet-based visual field test (Eyecatcher): an assessment of accuracy and adherence over 6 months. Am J Ophthalmol. 2021;223:42–52.

    Article  PubMed  Google Scholar 

  29. M700 Automated Perimeter | Medmont International Pty Ltd. Accessed 15 June 2023.

    Google Scholar 

  30. Easyfield® - Perimetry - Highlights - OCULUS, Inc. Accessed 15 June 2023.

    Google Scholar 

  31. Tsapakis S, Papaconstantinou D, Diagourtas A, et al. Home-based visual field test for glaucoma screening comparison with Humphrey perimeter. Clin Ophthalmol. 2018;12:2597–606. https://doi.org/10.2147/OPTH.S187832.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Razeghinejad R, Gonzalez-Garcia A, Myers JS, Katz LJ. Preliminary report on a novel virtual reality perimeter compared with standard automated perimetry. J Glaucoma. 2021;30:17–23.

    Article  PubMed  Google Scholar 

  33. Stapelfeldt J, Kucur SS, Huber N, et al. Virtual reality-based and conventional visual field examination comparison in healthy and glaucoma patients. Transl Vis Sci Technol. 2021;10(12):10. https://doi.org/10.1167/tvst.10.12.10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Montelongo M, Gonzalez A, Morgenstern F, et al. Virtual reality-based automated perimeter, device, and pilot study. Transl Vis Sci Technol. 2021;10:20. https://doi.org/10.1167/tvst.10.3.20.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Groth SL, Linton EF, Brown EN, et al. Evaluation of virtual reality perimetry and standard automated perimetry in normal children. Transl Vis Sci Technol. 2023;12(1):6. https://doi.org/10.1167/tvst.12.1.6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Narang P, Agarwal A, Srinivasan M, Agarwal A. Advanced vision analyzer-virtual reality perimeter: device validation, functional correlation and comparison with Humphrey field analyzer. Ophthalmol Sci. 2021;1(2):100035. https://doi.org/10.1016/j.xops.2021.100035.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Odayappan A, Sivakumar P, Kotawala S, et al. Comparison of a new head mount virtual reality perimeter (C3 field analyzer) with automated field analyzer in neuro-ophthalmic disorders. J Neuroophthalmol. 2023;43:232–6.

    Article  PubMed  Google Scholar 

  38. Zheng C, Johnson TV, Garg A, Boland MV. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30:97–103.

    Article  CAS  PubMed  Google Scholar 

  39. Salazar H, Misra V, Swaminathan SS. Artificial intelligence and complex statistical modeling in glaucoma diagnosis and management. Curr Opin Ophthalmol. 2021;32:105–17.

    Article  PubMed  Google Scholar 

  40. Thompson AC, Jammal AA, Medeiros FA. A review of deep learning for screening, diagnosis, and detection of glaucoma progression. Transl Vis Sci Technol. 2020;9(2):4. https://doi.org/10.1167/tvst.9.2.42.

    Article  Google Scholar 

  41. Kucur S, Holló G, Sznitman R. A deep learning approach to automatic detection of early glaucoma from visual fields. PLoS One. 2018;13(11):e0206081. https://doi.org/10.1371/journal.pone.0206081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103:167–75.

    Article  PubMed  Google Scholar 

  43. Li F, Wang Z, Qu G, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging. 2018;18(1):35. https://doi.org/10.1186/s12880-018-0273-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123:1974–80.

    Article  PubMed  Google Scholar 

  45. Satgunam P, Datta S, Chillakala K, et al. Pediatric perimeter-a novel device to measure visual fields in infants and patients with special needs. Transl Vis Sci Technol. 2017;6(4):3. https://doi.org/10.1167/tvst.6.4.3.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuba M, Kremláček J, Vít F, et al. VEP examination with new portable device. Doc Ophthalmol. 2023;146:79–91.

    Article  PubMed  Google Scholar 

  47. Vilupuru AS, Rangaswamy NV, Frishman LJ, et al. Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. J Opt Soc Am A Opt Image Sci Vis. 2007;24:1417–25.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang G, Gast T, Luo T, et al. Imaging retinal nerve fiber loss in glaucoma using adaptive optics scanning laser ophthalmoscopy (abstract). Invest Ophthalmol Vis Sci. 2013;54(15):1451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Rao .

Editor information

Editors and Affiliations

Ethics declarations

Hyderabad Eye Research Foundation, Hyderabad, India.

Disclosure

NA.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, A.K., Shastry, R., Rao, A. (2024). Visual Field. In: Das, T., Satgunam, P. (eds) Ophthalmic Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-97-0138-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0138-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0137-7

  • Online ISBN: 978-981-97-0138-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation