Natural Rubber (Hevea brasiliensis Muell Arg.)

  • Chapter
  • First Online:
Soil Health Management for Plantation Crops
  • 75 Accesses

Abstract

The major commercial source of natural rubber is the rubber tree (Hevea brasiliensis). Cultivation of NR tree is mainly confined to the regions experiencing warm humid equatorial monsoon climate. Thailand, Indonesia, Vietnam, Malaysia and India are the major natural rubber-producing countries. The soils under NR cultivation in general are acidic in pH and low in nutrients especially Ca and Mg. The soil site suitability criteria for NR cultivation have been developed. The top 0–15 cm layer of the soils under NR cultivation is rich in OC through the turnover of large quantity of organic matter from cover crops, crop residues from the intercrops/crop** system and litter addition from annual leaf fall. Cultivation of NR with leguminous cover crops or carefully designed intercrops suiting the local food habits in the young phase help in the addition of large quantity of crop residues favouring the buildup of soil organic matter, proliferation of microbial community and improvement in soil fertility and soil health. Liming to manage soil acidity and supplementation of Ca and Zn and B recommendations are recent inclusions in the fertility management of NR growing soils in India. Biofertilizers, especially P solubilizers and mobilizers and plant growth-promoting rhizobacteria like Pseudomonas got immense potential for the internal mobilization of nutrients in NR growing soils. Carbon sequestration potential of NR plantations is an added advantage in the global warming scenario. Repeated cycles of NR cultivation in the same soil in the traditional belt of cultivation and expansion of NR cultivation to more and more marginal areas having low soil fertility, in addition to the climatic constraints and uncertainties, warrant careful management of the soil health for sustained production of NR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHP:

Analytical hierarchy process

AMF:

Arbuscular mycorrhizal fungi

Al:

Aluminium

B:

Boron

BS:

Base saturation

BI:

Bioinoculants

C:

Carbon

Ca:

Calcium

CEC:

Cation exchange capacity

CFU:

Colony-forming units

FYM:

Farm yard manure

GIS:

Geographic Information System

H:

Hydrogen

IAA:

Indole acetic acid

LGP:

Length of growing period

MAFS:

Mature rubber-based agroforestry system

MCDM:

Multi-criteria decision-making

Mg:

Magnesium

N:

Nitrogen

NBSS and LUP:

National Bureau of Soil Survey and Land Use Planning

NR:

Natural rubber

OC:

Organic carbon

P:

Phosphorus

PGPR:

Plant growth-promoting rhizobacteria

PWAC:

Percent water available capacity

RubSIS:

Rubber Soil Information System

SMU:

Soil management unit

SOC:

Soil organic carbon

YAFS:

Young rubber-based agroforestry system

Zn:

Zinc

References

  • Abraham J (2015) Soil health in different land use systems in a tropical region of Kerala. Rubber Sci 28(1):68–71

    Google Scholar 

  • Abraham J, Chudek JA (2008) Studies on litter characterization using 13C NMR and assessment of microbial activity in natural forest and plantation crops’ (teak and rubber) soil ecosystems of Kerala, India. Plant Soil 303(1 & 2):265–273

    Article  CAS  Google Scholar 

  • Abraham J, Joseph P (2015) A new weed management approach to improve soil health in a tropical plantation crop, rubber (Hevea brasiliensis). Exp Agric 52(1):36–50. https://doi.org/10.1017/s0014479714000544

    Article  Google Scholar 

  • Abraham J, Philip A (2022) Climate change mitigation: potential role of soils under rubber-based crop** systems. Rubber Sci 35(1):27–36

    Google Scholar 

  • Ambily KK, Ulaganathan A (2015) Biomass production, carbon storage capacity and nutrient export in natural rubber. Rubber Board Bull 33(4):4–10

    Google Scholar 

  • Ambily KK, Joseph M (2018) Effect of soil pH and base status on the growth of young natural rubber plants. Rubber Sci 31(3):232–242

    Google Scholar 

  • Ambily KK, Meenakumari T, Jessy MD, Ulaganathan A, Nair NU (2012) Carbon sequestration potential of RRII 400 series clones of Hevea brasiliensis. Rubber Sci 25(2):233–240

    Google Scholar 

  • Bhattacharya T, Seghal J, Sarkar D (1996) Soils of Tripura: their kinds, distribution and suitability to major field crops and rubber, detailed bulletin and data base for optimizing land use. NBSS Publication 65, Soils of India Series 6, National Bureau of Soil Survey and Land Use Planning, Nagpur. 149 p

    Google Scholar 

  • Blagodatsky S, Xu J, Cadisch G (2016) Carbon balance of rubber (Hevea brasiliensis) plantations: a review of uncertainties at plot, landscape and production level. Agric Ecosyst Environ 221:8–19

    Article  Google Scholar 

  • Bradshaw MJ (1977) Earth, the living planet. Hodder and Stoughton, London. 322 p

    Google Scholar 

  • Bridges EM (1979) World soils, 2nd edn. Cambridge University Press, Cambridge. 128 p

    Google Scholar 

  • Chambon B, Ruf F, Kongmanee C, Angthong S (2016) Can the cocoa cycle model explain the continuous growth of the rubber (Hevea brasiliensis) sector for more than a century in Thailand? J Rural Stud 44:187–197

    Article  Google Scholar 

  • Chen C, Liu W, Jiang X, Wu J (2017) Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: implications for land use. Geoderma 299. https://doi.org/10.1016/j.geoderma.2017.03.021

  • Datta B, Jessy MD, Dey SK (2019) Rubber-based crop** system studies in North East India. Rubber Sci 32(3):272–282

    Google Scholar 

  • de Blécourt M, Brumme R, Xu J, Corre MD, Veldkamp E (2013) Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS One 8(7):e69357

    Article  PubMed  PubMed Central  Google Scholar 

  • Dissanayake DMAP (2001) Rubber growing soils and their characteristics. In: Agronomy Tillekeratne LMK, Nugawela A (eds) Hand book of rubber, vol 1. Rubber Research Institute of Sri Lanka, Dartonfield, Sri Lanka, pp 12–25

    Google Scholar 

  • Eswaran H, Bin WC (1978a) A study of a deep weathering profile on granite in Peninsular Malaysia: I. Physico-chemical and micromorphological properties. Soil Sci Soc Am J 42(1):144–149

    Article  CAS  Google Scholar 

  • Eswaran H, Bin WC (1978b) A study of a deep weathering profile on granite in Peninsular Malaysia: II. Mineralogy of the clay, slit, and sand fractions. Soil Sci Soc Am J 42(1):149–153

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (1976) Framework for land evaluation. FAO Soils Bulletin No. 32. Food and Agriculture Organization, Rome, 87 p

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2012) World agriculture watch. Methodological framework. Summary version 2.6. Food and Agriculture Organization, Rome. 48 p

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2016) FAOSTAT statistics database. https://search.library.wisc.edu/catalog/999882363002121

  • Fox J, Castella JC (2013) Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: what are the prospects for smallholders? J Peasant Stud 40(1):155–170

    Article  Google Scholar 

  • George S, Joseph P (2011) Natural rubber plantation: a nutritionally self-sustaining ecosystem. Nat Rubber Res 24(2):197–2002

    Google Scholar 

  • George S, Meti S (2018) Cocoa and coffee as intercrops in mature rubber plantation: effects on growth and yield of rubber and physico-chemical properties of soil. Rubber Sci 31(1):31–40

    Google Scholar 

  • Gilot C, Lavelle P, Blanchart E, Keli J, Kouassi P, Guillaume G (1995) Biological activity of soil, under rubber plantations in Côte d’Ivoire. Acta Zool Fenn 196:186–189

    Google Scholar 

  • Golbon R, Cotter M, Sauerborn J (2018) Climate change impact assessment on the potential rubber cultivating area in the Greater Mekong Subregion. Environ Res Lett 13(8):084002. https://doi.org/10.1088/1748-9326/aad1d1

    Article  CAS  Google Scholar 

  • Hazir MHM, Kadir RA, Karim YA (2018) Projections on future impact and vulnerability of climate change towards rubber areas in Peninsular Malaysia. IOP Conf Ser Earth Environ Sci 169(1):1–9. https://doi.org/10.1088/1755-1315/169/1/012053

    Article  Google Scholar 

  • Hazir MHM, Kadir RA, Gloor E, Galbraith D (2020) Effect of agro-climatic variability on land suitability for cultivating rubber (Hevea brasiliensis) and growth performance assessment in the tropical rainforest climate of Peninsular Malaysia. Clim Risk Manag 27:100203. https://doi.org/10.1016/j.crm.2019.100203

    Article  Google Scholar 

  • Herrmann L, Bräu L, Robin A, Robain H, Wiriyakitnateekul W, Lesueur D (2016a) High colonization by native arbuscular mycorrhizal fungi (AMF) of rubber trees in small-holder plantations on low fertility soils in North East Thailand. Archiv Agron Soil Sci 62(7):1041–1048

    Article  CAS  Google Scholar 

  • Herrmann L, Lesueur D, Bräu L, Davison L, Jairus T, Robain H, Robin A, Vasar M, Wiriyakitnateekul MW, Öpik M (2016b) Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza 26:863–877

    Article  PubMed  Google Scholar 

  • Jacob J (2003) Carbon sequestration potential of natural rubber plantations. In: Proceedings of IRRDB Symposium on Challenges for Natural Rubber in Globalization, Chang Mai, Thailand, 15–17 Sept 2003

    Google Scholar 

  • Jacob J (2006) Carbon sequestration potential of natural rubber plantations. In: Mathew NM (ed) Jacob J. Koyoto protocol and the rubber industry, Rubber Research Institute of India, pp 165–176

    Google Scholar 

  • Jessy MD (2004) Phosphorus nutrioperiodism in rubber. PhD thesis, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India, 166 p

    Google Scholar 

  • Jessy MD, Jacob J (2020) Conserving/improving biodiversity in rubber plantations in India: a review of possibilities and ecological implications. Rubber Sci 33(2):112–126

    Google Scholar 

  • Jessy MD, Sethuraj MR, Joseph K (1996) Physico-chemical properties of soils under rubber with different nutrient management practices: a case study. Indian J Nat Rubber Res 2:134–136

    Google Scholar 

  • Jessy MD, Philip V, Punnoose KI, Sethuraj MR (1998) Evaluation of a multispecies crop** system during immaturity phase of rubber. Indian J Nat Rubber Res 11(1 & 2):80–87

    CAS  Google Scholar 

  • Jessy MD, Nair ANS, Joseph P, Prathapan K, Krishnakumar V, Nair RB, Mathew M, Punnoose KI (2004) Response of the high yielding Hevea clone RRII 105 to fertilizers. Nat Rubber Res 19(1 & 2):38–45

    Google Scholar 

  • Jessy MD, Punnose KI, Nayar TVR (2005) Crop diversification and its sustainability in young rubber plantation. J Plantn Crops 33(1):29–35

    Google Scholar 

  • Jessy MD, Meera Bai M, Nair ANS, Meti S (2007) Adaptability to low soil phosphorus in rubber trees: role of roots and arbuscular mycorrhizal fungi. J Plantn Crops 35:133–138

    Google Scholar 

  • Jessy MD, Meti S, Nair UN (2013a) A crop** system for reduction of gestation period and enhanced yield of rubber trees (Hevea brasiliensis). Rubber Sci 26:210–216

    Google Scholar 

  • Jessy MD, Syamala VK, Ulaganathan A (2013b) Ground covers differ in their effect on soil pH in rubber (Hevea brasiliensis) plantations. National Seminar on Developments in Soil Science. Central Arid Zone Research Institute, Rajasthan, India, 23–26 Oct 2013

    Google Scholar 

  • Jessy MD, Joseph P, George S (2015) Establishing perennial intercrops in rubber plantations after the removal of pineapple: effect on growth and yield of rubber, soil moisture and nutrient status. Rubber Sci 28(2):138–146

    Google Scholar 

  • Jessy MD, Joseph P, George S (2016) Possibilities of diverse rubber-based agroforestry systems for small holdings in India. Agrofor Syst 91(3):515–526

    Article  Google Scholar 

  • Jessy MD, Syamala VK, Ulaganathan A (2020) Natural flora improves properties of acid soil in rubber plantations. J Indian Soc Soil Sci 68(3):315–332

    Article  Google Scholar 

  • Joseph K (1997) Studies on vascular arbuscular mycorrhizal fungi in the growth improvement of Pueraria phaseoloides Benth. PhD Thesis, Mahatma Gandhi University, Kottayam, Kerala, India, 174 p

    Google Scholar 

  • Joseph M (1999) Studies on some competing factors in the intercrop** young rubber (Hevea brasiliensis). PhD thesis, Kerala Agricultural University, Vellanikkara, Thrissur, 95 p

    Google Scholar 

  • Joseph M (2011) Exchange properties of soils in the traditional rubber growing tract in South India. Nat Rubber Res 24(1):97–105

    CAS  Google Scholar 

  • Joseph M (2016) Rubber growing soils of India: an overview. Rubber Sci 29(2):119–139

    Google Scholar 

  • Joseph M, Sudhakumari B (2013) Assessment of zinc availability in the ultisols of south India under rubber cultivation. J Indian Soc Soil Sci 61(1):67–71

    CAS  Google Scholar 

  • Joseph M, Prasad MP, Antony PA, Punnoose KI (1995) DTPA extractable soil micronutrients in the traditional rubber growing regions in India. Indian J Nat Rubber Res 8(2):135–139

    CAS  Google Scholar 

  • Joseph K, Kothandaraman R, Mathew J (1996) Phosphate solubilization by Bacillus circulans, a leap towards phosphatic fertilizer management in rubber plantations. National Seminar on Organic Farming and Sustainable Agriculture, Bangalore, India, 9–11 Oct 1996, p 69

    Google Scholar 

  • Joseph K, Vimalakumari TG, Mathew J, Kothandaraman R (1997) Effect of Azotobacter inoculation on rubber seedlings. Indian J Nat Rubber Res 10(1 & 2):34–38

    Google Scholar 

  • Joseph M, Nair RB, Mathew M, Punnoose KI (1998) Potassium nutrition of mature rubber. Indian J Nat Rubber Res 11(1 & 2):58–66

    CAS  Google Scholar 

  • Joseph K, Kothandaraman R, Vimalakumari TG, Mathew J (2002) Occurrence of Arbuscular mycorrhizal fungi in rubber growing soils and their effect on growth of Heveabrasiliensis seedlings. Proceedings of Placrosym XV:317–325

    Google Scholar 

  • Joseph K, Sinju V, **u G, Mathew J, Kuruvilla CJ (2003) Plant growth promoting rhizobacteria in rubber (Hevea brasiliensis) plantations. 6th international workshop on plant growth promoting rhizobacteria. Indian Institute of Spices Research, Calicut, Kerala, India, 5–10 Oct 2003

    Google Scholar 

  • Joseph M, Sudhakumari B, Punnoose KI, Karthikakuttyamma M (2007) Response of rubber seedlings in the nursery to application of zinc. Nat Rubber Res 20(1 & 2):61–65

    Google Scholar 

  • Joseph M, Syamala VK, Joseph P (2008) Response of mature rubber to lime and magnesium application. J Plantn Crops 36(3):357–359

    Google Scholar 

  • Joseph M, Syamala VK, Punnoose KI (2009) Effect of liming on the availability of nutrients and growth of young rubber. Nat Rubber Res 22(1&2):55–63

    Google Scholar 

  • Joseph M, Joseph K, Mathew J, Hareeshbabu G, Elias RS (2015) Nutrient management in rubber seedling nursery: studies on an integrated approach through incorporation of bioinoculants. Rubber Sci 28(1):70–75

    Google Scholar 

  • Joseph K, Philip S, Jose G (2017) Isolation and selection of efficient phosphofungi from rubber plantations. Rubber Sci 30(3):262–268

    Google Scholar 

  • Joseph M, Chandy B, Aneesh P (2018) Leaf nutrient status of the rubber plantations of South India. Rubber Sci 31(3):217–226

    Google Scholar 

  • Joseph M, Joseph K, Hareeshbabu G, Elias RS (2020) Availability of nitrogen and phosphorus in the soil and growth of natural rubber plants under integrated nutrient management system. Rubber Sci 33(2):164–176

    Google Scholar 

  • Joseph P, Jessy MD, Mohan M (2022) Soil carbon pools under rubber (Hevea brasiliensis) based agroforestry systems in South India. Agrofor Syst 96:1121–1133

    Article  Google Scholar 

  • Karthikakuttyamma M (1997) Effect of continuous cultivation of rubber (Heveabrasiliensis) on soil properties. PhD Thesis, University of Kerala, Trivandrum, India, 176 p

    Google Scholar 

  • Karthikakuttyamma M, Suresh PR, Prasannakumari P, George V, Iyer RS (1998) Effect of continuous cultivation of rubber (Hevea brasiliensis) on morphological features and organic carbon, total nitrogen, phosphorus and potassium contents of soil. Indian J Nat Rubber Res 11(1 & 2):73–79

    Google Scholar 

  • Karthikakuttyamma M, Joseph M, Nair ANS (2000) Soils and nutrition. In: George PJ, Jacob KC (eds) Natural rubber: agromanagement and crop processing. Rubber Research Institute of India, Kottayam, pp 170–198

    Google Scholar 

  • Kharche VK, Sehgal JL, Challa O (1995) Evaluation of soil-site conditions for suitability of rubber. Agroped 5:69–78

    Google Scholar 

  • Kothandaraman R, Mathew J, Krishnakumar AK, Joseph K, Jayarathnam K, Sethuraj MR (1989) Comparative efficiency of Mucuna bracteate D.C. and Pueraria phaseoloides Benth. on soil nutrient enrichment, microbial population and growth of Hevea. Indian J Nat Rubber Res 2(2):147–150

    Google Scholar 

  • Kothandaraman R, Mathew J, Joseph K, Jayaratnam K (1993) The impact of Bradyrhizobium inoculation on nodulation, biomass production and nitrogen fixation in Pueraria phaseoloides. Indian J Nat Rubber Res 6(1 & 2):50–54

    Google Scholar 

  • Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S (2015) Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol Fertil Soils 51:697–705

    Article  CAS  Google Scholar 

  • Krishnakumar AK (1989) Soils under Hevea in India: a physical, chemical and Mineralogical study with reference to soil moisture contents influence on yield of Hevea brasiliensis. PhD Thesis, Indian Institute of Technology, Kharagpur, India

    Google Scholar 

  • Krishnakumar AK, Gupta C, Sinha RR, Sethuraj MR, Potty SN, Eappen T, Das K (1991) Ecological impact of rubber (Hevea brasiliensis) plantations in North East India. 2. Soil properties and biomass recycling. Indian J Nat Rubber Res 4(2):134–141

    Google Scholar 

  • Krishnakumar AK, Potty SN (1992) Nutrition of Hevea. In: Sethuraj MR, Mathew NM (eds) Natural rubber: biology, cultivation and technology. Elsevier, Amsterdam, pp 239–262

    Chapter  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Article  Google Scholar 

  • Lavelle P, Rodríguez N, Arguello O, Bernal J, Botero C, Chaparro P, Gómez Y, Gutiérrez A, del Pilar HM, Loaiza S, Pullido SX, Rodríguez E, Sanabria C, Velásquez E, Fonte SJ (2014) Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. AgrEcosyst Environ 185:106–117

    Article  Google Scholar 

  • Ling Z, Shi Z, Gu S, Wang T, Zhu W, Feng G (2022) Impact of climate change and rubber (Hevea brasiliensis) plantation expansion on reference evapotranspiration in **shuangbanna, Southwest China. Front Plant Sci 13:830519. https://doi.org/10.3389/fpls.2022.830519

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhou G, Shibo F, Zhang J (2015) Effects of future climate change on climatic suitability of rubber plantation in China. Chin J Appl Ecol 26:2083–2090

    Google Scholar 

  • Liu C, Pang J, Jepson MR, Lu X, Tang J (2017) Carbon stocks across a fifty year chronosequence of rubber plantation in tropical China. Forests 8(6). https://doi.org/10.3390/f8060209

  • Liu C, Wang QW, ** Y, Tang JW, Lin F, Olatunji OA (2021) Perennial cover crop biomass contributes to regulating soil P availability more than rhizosphere P-mobilizing capacity in rubber-based agroforestry systems. Geoderma 401(1). https://doi.org/10.1016/j.geoderma.2021.115218

  • Mandal D, Sharma AC, Dey SK, Baruah TC (2010) Status of DTPA-extractable micronutrients in rubber growing soils of Tripura. Nat Rubber Res 23(1 & 2):98–104

    Google Scholar 

  • Mandal D, Pal TK, Dey SK, Jacob J (2012) Changes in organic carbon and some soil properties under rubber (Hevea brasiliensis) plantation in sub-tropical Tripura. Nat Rubber Res 25(1):13–20

    CAS  Google Scholar 

  • Mandal D, Pal TK, Joseph M, Dey SK (2013) Fertility evaluation of the soils under rubber plantations in Tripura. Rubber Board Bull 31(4):4–9

    Google Scholar 

  • Mandal D, Joseph M (2018) Integrated nutrient management practices for young rubber in Tripura, North East India. Rubber Sci 31(2):121–129

    Google Scholar 

  • Mathew J, Kumaran MG, Joseph K, George ES (2000) Waste management. In: George PJ, Jacob CK (eds) Natural rubber, agromanagement and crop processing. Rubber Research Institute of India, Kottayam, Kerala, pp 493–506

    Google Scholar 

  • Meenakumari T, Meenattoor JR, Soman TA, Dey SK, Das G, Raj S, Sailajadevi T, Nair RB, Raman KA, Gireesh T, Mydin KK (2011) Yield of modern Hevea clones and their response to weather parameters across diverse environments. Nat Rubber Res 24(1):44–53

    Google Scholar 

  • Meti S, Pradeep B, Jacob J, Meerabai M, Jessy MD (2014) Spatio-temporal analysis of rubber area and its association with soil and topography in Kanyakumari district. Rubber Sci 27(2):182–192

    Google Scholar 

  • Min S, Wang X, ** S, Waibel H, Huang J (2020) Climate change and farmers’ perceptions: impact on rubber farming in the Upper Mekong region. Climatic Change 163(1):451–480. https://doi.org/10.1007/s10584-020-02876-2

    Article  Google Scholar 

  • Muschler RG, Bonnemann A (1997) Potentials and limitations of agro-forestry for changing land-use in the tropics: experiences from Central America. For Ecol Manag 91:61–73

    Article  Google Scholar 

  • Naidu LGK, Nair KM, Srinivas S, Vadivelu S (2008) Analysis of soil variability in rubber growing areas of Kerala and Tamil Nadu and generation of district-wise thematic maps on soil qualities. NBSS publication 1014. National Bureau of Soil Survey and Land Use Planning, Nagpur

    Google Scholar 

  • Naidu LGK, Nair KM, Srinivas S (2014) Rubber-growing areas of Kerala and Tamil Nadu: soil related constraints to rubber productivity and delineation of soil management units. J Indian Soc Soil Sci 62(1):67–70

    Google Scholar 

  • NBSS and LUP (1999) Resource soil survey and map** of rubber growing soils of Kerala and Tamil Nadu. National Bureau of Soil Survey and Land Use Planning, Nagpur. 295 p

    Google Scholar 

  • Njar G, Iwara A, Ekukinam U, Deekor T, Amiolemen S (2011) Organic carbon and total nitrogen status of soils under rubber plantation of various ages, south-southern Nigeria. J Environ Sci Resour Manag 3:1–13

    Google Scholar 

  • Partelli FL, Araujo AV, Vieira HD, Dias JRM, Menezes LFT, Ramalho JC (2014) Microclimate and development of ‘Conilon’ coffee intercropped with rubber trees. Pesqagropec bras, Brasilia 49(11):872–881

    Article  Google Scholar 

  • Pathiratna LSS, Perera MKP (2006) Intercrop** medicinal plants under rubber (Hevea). Bull Rubber Res Inst Sri Lanka 47:28–33

    Google Scholar 

  • Peerawat M, Blaud A, Trap J, Chevallier T, Alonso P, Gay F, Thaler P, Spor A, Sebag D, Chutinan P, Suvannang N, Sajjaphan K, Brauman A (2018) Rubber plantation ageing controls soil biodiversity after land conversion from cassava. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2018.01.034

  • Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM (2017) Precipitation variability increases in a warmer climate. Sci Rep 7(1):17966

    Article  PubMed  PubMed Central  Google Scholar 

  • Philip A, Joseph M, Punnoose KI, Antony PA (1995) Effect of liming on nutrient uptake, biomass production and nodulation in Pueraria phaseoloides. Indian J Nat Rubber Res 8(2):130–134

    Google Scholar 

  • Philip A, Philip V, George ES, Punnoose K, Mathew M (2003) Leaf litter decomposition and nutrient release in a fifteen-year-old rubber plantation. Indian J Nat Rubber Res 16(1 & 2):81–84

    CAS  Google Scholar 

  • Philip A, Varghese M, Syamala VK, Joseph K, Jessy MD, Nair NU (2012) Integrating organic manure to reduce chemical fertilizer input and enhance growth in young rubber plantations. J Plantn Crops 40(3):158–162

    Google Scholar 

  • Philip A, Ulaganathan A, Pradeep B, Prasannakumari P, Jessy MD, Jacob J, Abraham J, Syamala VK, Ambily KK, George S, Joseph P, Eapen T, Cyriac J, Mathews PM, Anilkumar KS, Nair KM (2020) Spatial variability of plant available zinc and boron in the traditional rubber growing regions and Konkan region of India. Rubber Sci 33(2):152–163

    Google Scholar 

  • Philip A, Jessy MD (2022) Calopogonium caeruleum – an alternate cover crop in rubber plantations. Rubber Sci 35(1):72–77

    Google Scholar 

  • Polthanee A, Promkhambut A, Khamla N (2016) Seeking security through rubber intercrop**: a case study from North eastern Thailand. Asia Pacific J Sci Technol 21(3):1–11

    Google Scholar 

  • Pradeep B, Jacob J, Jessy MD (2019) Rubber Soil Information System (RubSIS): a decision making tool for skip** fertilizer application in rubber plantations. Rubber Sci 32(1):63–67

    Google Scholar 

  • Pradeep B, Sylas VP, Jessy MD (2022) A framework for assessing the vulnerability of rubber plantations to the impacts of climate change with special reference to Kerala, India. J Rubber Res. https://doi.org/10.1007/s42464-022-00186-z

  • Prasannakumari P, Joseph M, Nair NU (2008) Organic phosphorus status of the major soil series under rubber cultivation in South India. Nat Rubber Res 21(1 & 2):98–103

    Google Scholar 

  • Prasannakumari P, Jessy MD, Antorny PA, Chacko J, Jacob J (2014) Nutrient and heavy metal status of soils under rubber-pineapple intercrop** in comparison to rubber-cover crop system and natural forest. Rubber Sci 27(1):84–90

    CAS  Google Scholar 

  • Prasannakumari P, Jessy MD, Pradeep B, Jacob J, Abraham J, Philip A, Ambili KK, Joseph P, Geroge S, Syamala VK, Ulaganathan A, Eappen T, Mathews PM, Anilkumar KS, Nair KM (2020) Spatial variability of available calcium and magnesium in soils in the rubber growing regions of South India. Rubber Sci 33(1):18–32

    Google Scholar 

  • Punnoose KI (1993) Interrelationship of applied nutrients on growth, productivity and latex flow characteristics of Hevea brasiliensis Muell Arg. PhD Thesis, Kerala Agricultural University, Trissur, India, 170 p

    Google Scholar 

  • Punnoose KI, Potty SN, Mathew M, George CM (1976) Response of Hevea brasiliensis to fertilizers in South India. Proceedings, International Natural Rubber Conference, 1975, Kuala Lumpur, Malaysia, pp 84–107

    Google Scholar 

  • Pushpadas MV, Karthikakuttyamma M (1980) Agro ecological requirements. In: Radhakrishna Pillai PM (ed) Handbook of natural rubber production in India. Rubber Research Institute of India, Kottayam, pp 87–109

    Google Scholar 

  • Pushpadas MV, Subbarayalu G, George CM (1978) Studies on correlations between nutrient levels in soil and leaf and yield of Hevea brasiliensis. Rubber Board Bull 15(1 & 2):11–23

    Google Scholar 

  • Pushparajah E (1977) Nutrition and fertilizer us in Hevea and associated covers in Peninsular Malaysia: a review. J Rubber Res Inst Sri Lanka 54(1):270–283

    Google Scholar 

  • Raj S, Satheesh PR, Jacob J (2011) Evidence for climate warming in some natural rubber growing regions of South India. Nat Rubber Res 24(1):10–17

    Google Scholar 

  • Rao PS, Vijayakumar KR (1992) Climatic requirements. In: Sethuraj MR, Mathew NM (eds) Natural rubber, biology, cultivation and technology. Elsevier, Amsterdam, pp 200–219

    Chapter  Google Scholar 

  • Ray D, Behera MD, Jacob J (2016) Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modelling with climate, soil, topography and socio-economic factors. Ecol Res 31:75–91. https://doi.org/10.1007/s11284-015-1318-7

    Article  Google Scholar 

  • Ray D, Behera MD, Jacob J (2014) Indian Brahmaputra valley offers significant potential for cultivation of rubber trees under changed climate. Curr Sci 107(3):1–9

    Google Scholar 

  • Rodrigo VHL, Silva TUK, Munasinghe ES (2004) Improving the spatial arrangement of planting rubber (Hevea brasiliensis Muell Arg.) for long-term intercrop**. Field Crops Res 89(2–3):327–335

    Article  Google Scholar 

  • Rubber Research Institute of Malaysia (1977) A soil suitability technical grou** system for Hevea. Planter’s Bull Rubber Res Inst Malaysia 152:135–146

    Google Scholar 

  • Sanchez PA, Couto W, Buol SW (1982) The fertility capability soil classification system: interpretation, applicability and modification. Geoderma 27(4):283–309

    Article  Google Scholar 

  • Saengruksawong C, Khamyong S, Anongrak N, Pinthong J (2012) Growths and carbon stocks in rubber plantations on Chakkarat soil series, Northeastern Thailand. Suranaree J Sci Technol 19(4):271–278

    Google Scholar 

  • Samarappuli L (2001) Nutrition. In: Tillekeratne LMK, Nugawela A (eds) Hand book of rubber, Agronomy, vol 1. Rubber Research Institute of Sri Lanka, Dartonfield, Agalawatta, Sri Lanka, pp 156–175

    Google Scholar 

  • Satheesh PR, Jacob J (2011) Impact of climate warming on natural rubber productivity in different agro-climatic regions of India. Nat Rubber Res 24(1):1–9

    Google Scholar 

  • Scheff J, Frierson DMW (2014) Scaling potential evapotranspiration with greenhouse warming. J Climate 27(4):1539–1558

    Article  Google Scholar 

  • Schneider D, Engelhaupt M, Allen K, Kurniawan S, Krashevska V, Heinemann M, Nacke H, Wijayanti M, Meryandini A, Corre MD, Scheu S, Daniel R (2015) Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Front Microbiol 6:1–12

    Article  Google Scholar 

  • Sivanadyan K, Moris N (1992) Consequences of transforming tropical rain forests to Hevea plantations. Planter 68(800):547–567

    Google Scholar 

  • Sivanadyan K, Gandimathi H, Haridas G (1995) Rubber, a unique crop: the mature Hevea stand as a nutritionally self–sustaining ecosystem in relation to latex yield. Rubber Research Institute of Malaysia, Kuala Lumpur. 54 p

    Google Scholar 

  • Strahler AN (1969) Physical geography, 3rd edn. Wiley, New York. 733 p

    Google Scholar 

  • Suresh PR, Karthikakuttyamma M, Mathew M, Pothen M, Augusthy A (1994) Contribution of exchangeable aluminium to subsoil acidity in rubber growing tracts. Proceedings of the Sixth Kerala Science Congress, Thiruvanathapuram, India, January 1994, pp 140–142

    Google Scholar 

  • Syamala VK, Joseph M, Punnoose KI (2003) Effect of liming on soil properties and growth of rubber seedlings. Indian J Nat Rubber Res 16(1 & 2):66–74

    CAS  Google Scholar 

  • Syamala VK (2006) Characterization of acidity and its management in rubber growing soils. PhD Thesis, Mahatma Gandhi University, Kottayam, Kerala, 145 p

    Google Scholar 

  • Syamala VK, Joseph M (2006) Effect of different liming materials on availability of nutrients and growth of rubber seedlings in the nursery. J Plantn Crops 34(3):356–360

    Google Scholar 

  • Syamala VK, George S, Joseph K, Nair ANS, Nair NU (2010) Effect of inorganic fertilizers and PGPR in the growth of rubber seedlings (Hevea brasiliensis) in nursery. First Asian PGPR congress for sustainable Agriculture, Acharya N. G. Ranga Agricultural University (ANGRAU), Hyderabad, India, 21–24 June 2009, Abstract p 54

    Google Scholar 

  • Syamala VK, George S, Joseph K, Idicula SP, Nair ANS, Nair NU (2015) Growth of direct seeded and budded stump polybag rubber (Hevea brasiliensis) plants under different nutrient management systems. Rubber Sci 28(1):76–81

    Google Scholar 

  • Sys C (1975) Report on the ad hoc expert consultation on land evaluation. FAO World Soil Resources Report No. 45. Rome, pp 59–79

    Google Scholar 

  • Thomas KK, Panikkar AON (2000) Indian rubber plantation industry: genesis and development. In: George PJ, Jacob KC (eds) Natural rubber: agro-management and crop processing. Rubber Research Institute of India, Kottayam, pp 1–19

    Google Scholar 

  • Ulaganathan A, Gilkes RJ, Nair NU, Jessy MD, Swingman N (2010) Soil fertility changes due to repeated rubber cultivation. Abstracts of the 19th biennial symposium on Plantation Crops, Kottayam, Kerala, India, 7–10 Dec 2010, pp 135–136

    Google Scholar 

  • Ulaganathan A, Syamala VK, Jessy MD (2012) Macro and micronutrient status of the traditional rubber growing regions of South India. Proceedings of the International Rubber Conference, Kovalam, Kerala, 28–31 Oct 2012, p 154

    Google Scholar 

  • van Oijen M, Dauzat J, Lawson G, Harmand JM, Vaast P (2010) Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor Syst 80(3):361–378

    Article  Google Scholar 

  • Verheye W (2010) Growth and production of rubber. In: Verheye W (ed) Land use, land cover and soil sciences. Encyclopaedia of life support systems. UNESCO-EOLSS Publishers, Oxford

    Google Scholar 

  • Varghese M, Sharma AC, Pothen J (2001) Addition of litter, its decomposition and nutrient release in rubber plantations in Tripura. Indian J Nat Rubber Res 14(1):116–124

    Google Scholar 

  • Vijayakumar KR, Chandrashekhar TR, Varghese P (2000) Agroclimate. In: George PJ, Jacob KC (eds) Natural rubber, agro-management and crop processing. Rubber Research Institute of India, Kottayam, Kerala, pp 97–116

    Google Scholar 

  • Vimalakumari TG, Joseph K, Jessy MD, Kothandaraman R, Mathew J, Punnoose KI (2001) Influence of intercrop** on the rhizosphere microflora of Hevea. Indian J Nat Rubber Res 14(1):55–59

    Google Scholar 

  • Virgnon-Brenas S, Gay F, Ricard S, Snoeck D, Perron T, Mareschal L, Laclau J, Gohet E, Malagoli P (2019) Nutrient management of immature rubber: a review. Agron Sust Dev 39:11. https://doi.org/10.1007/s13593-019-0554-6

    Article  Google Scholar 

  • Watson GA (1957) Cover plants in rubber cultivation. J Rubber Res Inst Malaya 15(1):2–18

    Google Scholar 

  • Watson GA (1989) Nutrition. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, UK, pp 291–348

    Google Scholar 

  • Webster CC, Baulkwill WJ (1989) Rubber. Longman Scientific and Technical, Essex. 614 p

    Google Scholar 

  • Wibawa G, Joshi L, Noordwijk MV, Penot E (2006) Rubber based agro-forestry systems (RAS) alternatives for rubber monoculture system. IRRDB: Annual Conference, Ho-Chi Minh city, Vietnam, p 745

    Google Scholar 

  • ** in the whole production span of rubber tree. Afr J Biotechnol 11(34):8484–8490

    Google Scholar 

  • Yasin S, Junaidi A, Wahyudi E, Herlena S, Darmawan KK (2010) Changes of soil properties on various ages of rubber trees in Dhamasraya, West Sumatra, Indonesia. J Trop Soils 5(3):221–227

    Article  Google Scholar 

  • Zhang M, Feng W, Chen J, Zou X (2021) Litter and microclimate controls on soil heterotrophic respiration after converting seasonal rainforests to rubber plantations in tropical China. Agri Forest Meteorol 310:108623. https://doi.org/10.1016/j.agrformet.2021.108623

    Article  Google Scholar 

  • Ziegler AD, Phelps J, Yuen JQ, Webb EL, Lawrence D, Fox JM, Bruun TB, Leisz SJ, Ryan CM, Dressler W, Mertz O, Pascual U, Padoch C, Koh LP (2012) Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD+ policy implications. Glob Biol 18(10):3087–3099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, M. (2024). Natural Rubber (Hevea brasiliensis Muell Arg.). In: Thomas, G.V., Krishnakumar, V. (eds) Soil Health Management for Plantation Crops. Springer, Singapore. https://doi.org/10.1007/978-981-97-0092-9_7

Download citation

Publish with us

Policies and ethics

Navigation