Oil Palm (Elaeis guineensis Jacq)

  • Chapter
  • First Online:
Soil Health Management for Plantation Crops

Abstract

Oil palm with its low land foot print for oil production is the most important global crop of present times. The two oils produced from palm tree are used in a variety of ways, viz. cooking, cosmetics, lubrication, sanitizing, and cleansing. Furthermore, the by-products of palm oil industry have numerous utilities such as feed, fuel, water purifier, etc. Besides all these apparent advantages, this crop also faces huge criticism in terms of GHG emissions, loss of biodiversity, and deforestation. To produce oil palm sustainably, Roundtable on Sustainable Palm Oil (RSPO), a voluntary global-level organization, set up the standards for certified palm oil production. These practices include right approach of planting, nutrient and water management, waste recycling, integrated pest management, etc. At present, globally, oil palm cultivation is concentrated in three continents, viz. humid tropical Asia, Africa, and Latin America in 46 countries. Though soil health is not much affected due to oil palm cultivation, improvement in soil condition can be achieved through sustainable management. In this chapter, we discuss suitable soil conditions for oil palm cultivation, how soil health is assessed through suitable indicators, constraints of soil fertility, nutrient management, use of soil amendments, the impact of climate change, soil biodiversity, and technological opportunities available for maintaining soil health and sustaining oil palm production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

%:

Percent

<:

Less than

>:

More than

AMF:

Arbuscular mycorrhizal fungi

ARDRA:

Amplified Ribosomal DNA Restriction Analysis

AUDPC:

Area under disease progression curve

BCA:

Bio-control agent(s)

BMPs:

Best management practices

BSR:

Basal stem rot

BVOC:

Biogenic volatile compound

C:

Carbon

C/N:

Carbon/Nitrogen

CARDI:

Caribbean Agricultural Research and Development Institute

CEC:

Cation exchange capacity

CFU g−1:

Colony-forming unit

cm:

Centimetre(s)

CMP:

Compost

CO2:

Carbon dioxide

CP:

Conservation practice(s)

CPO:

Crude palm oil

DAP:

Di-ammonium-phosphate

DGGE:

Denaturing Gradient Gel Electrophoresis

DNA-SIP:

DNA-stable isotope probing

DRIS:

Diagnosis and Recommendation Integrated System

dS m−1:

deciSiemens per metre

EB:

Endophytic bacteria

EC:

Electrical conductivity

ECO:

Eco-mat(s)

EFB:

Empty fruit bunches

EFBN:

Nitrogen content of EFB

FFB:

Fresh fruit bunches

FYM:

Farm yard manure

g:

Gram(s)

GHG:

Greenhouse gases

GJ:

Giga joules

ha:

Hectare(s)

ICAR:

Indian Council of Agricultural Research

IFS:

Integrated farming system

IIOPR:

Indian Institute of Oil Palm Research

ind. m−3:

Individuals per cubic metre

IOPA:

Indonesian oil palm association

IOT:

Internet of things

IPM:

Integrated pest management

IsoMO:

Isoprene monooxygenase

kg:

Kilogram(s)

LCA:

Life cycle analysis

LIG :

Lignin

LIG/N :

Lignin to N ratio

m:

Metre(s)

Mha:

Million hectares

MHB:

Mycorrhiza helper bacteria

Min N:

Mineral N

mm:

Millimetre(s)

MPOB:

Malaysia palm oil board

MRT:

Mean resident time

Mt:

Million metric tonnes

NDFA:

Nitrogen-derived from atmosphere

OC:

Organic carbon

OPF:

Oil palm frond(s)

PCoA:

Principal co-ordinates analysis

PGP:

Plant growth promoters

PGPR:

Plant growth-promoting rhizobacteria

PKO:

Palm kernel oil

POME:

Palm oil mill effluent

PP:

Polyphenol

PSB:

Phosphate-solubilizing bacteria

rRNA:

Ribosomal RNA

RSPO:

Roundtable on Sustainable Palm Oil

SHMP:

Smallholder management practices

SIL:

Silt pit(s)

SISKA:

Sistem Integrasi Sapi-Kelapa Sawit or System Integration Cattle–Oil Palm Plantations

SOC:

Soil organic carbon

SOM:

Soil organic matter

t:

Tonne(s)/ton(s)

T-RFLP:

Terminal Restriction Fragment Length Polymorphism

USDA:

United States Department of Agriculture

WRF:

White root fungus

References

  • Acevedo E, Galindo-Castaneda T, Prada F, Monica N, Hernan MR (2014) Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Appl Soil Ecol 80:26–33

    Article  Google Scholar 

  • AdeOluwa OO, Adeoye GO (2008) Potential of oil palm empty fruit bunch (EFB) as fertilizer in oil palm (Elaeis guineensis L. Jacq.) nurseries. In: Neuhoff D, Halberg N, Alfldi T, Lockeretz W, Thommen A, Rasmussen IA, Hermansen J, Vaarst M, Lck L, Carporali F, Jensen HH, Migliorini P, Willer H (eds) Cultivating the future based on science: 2nd conference of the International Society of Organic Agriculture Research ISOFAR, Modena, Italy. http://orgprints.org/12808/

    Google Scholar 

  • Agamuthu P, Broughton WJ (1985) Nutrient cycling within the develo** oil palm—legume ecosystem. Agric Ecosyst Environ 13:111–123

    Article  CAS  Google Scholar 

  • Alam MZ, Mamun AA, Qudsieh IY, Muyibi SA, Salleh HM, Omar NM (2009) Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem Eng J 46:61–64. https://doi.org/10.1016/j.bej.2009.03.010

    Article  CAS  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2001) Effects of Azospirillum inoculation on N fixation and growth of oil palm plantlets at nursery stage. J Oil Palm Res 13:42–49

    CAS  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2003) N2 fixation, nutrient accumulation and plant growth promotion by rhizobacteria in association with oil palm seedlings. Pak J Biol Sci 6:1269–1272

    Article  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Marziah M, Ramlan MF (2005) Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions. Commun Soil Sci Plant Anal 36:2059–2066

    Article  CAS  Google Scholar 

  • Angel LPL, Yusof MT, Ismail IS, ** BTY, Azni INAM, Kamarudin NH, Sundram S (2016) An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense. J Microbiol 54:732–744

    Article  CAS  PubMed  Google Scholar 

  • Arevalo-Gardini E, Canto M, Alegre J, Loli O, Julca A, Baligar V (2015) Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon. PLoS One 10(7):132–147. https://doi.org/10.1371/journal.pone.0132147

    Article  CAS  Google Scholar 

  • Auler AC, Pires LF, Dos Santos JAB, Caires E, Borges JAR, Giarola NFB (2017) Effects of surface-applied and soil-incorporated lime on some physical attributes of a Dystrudept soil. Soil Use Manag 33:129–140. https://doi.org/10.1111/sum.12330

    Article  Google Scholar 

  • Auxtero EA, Shamshuddin J (1991) Growth of oil palm (Elaeis guineensis) seedlings on acid sulfate soils as affected by water regime and aluminum. Plant Soil 137:243–257

    Article  CAS  Google Scholar 

  • Azwan MB, Norasikin AL, Abd Rahim S, Norman K, Salmah J (2016) Analysis of energy utilisation in Malaysian oil palm mechanisation operation. J Oil Palm Res 28(3):485–495

    CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Beaufils ER (1973) Diagnosis and recommendation integrated system (DRIS). Soil Sci. Bull., vol 1. University of Natal

    Google Scholar 

  • Behera SK, Shukla AK, Suresh K, Manorama K, Mathur RK, Kumar A, Harinarayana P, Prakash C, Tripathi A (2020) Oil palm cultivation enhances soil pH, electrical conductivity, concentrations of exchangeable calcium, magnesium, and available sulfur and soil organic carbon content. Land Degrad Dev 31:2789–2803. https://doi.org/10.1002/ldr.3657

    Article  Google Scholar 

  • Behera SK, Shukla AK, Suresh K, Mathur RK (2022) Nutritional imbalances and nutrient management in oil palm. In: Roy SS, Kashyap P, Adak T (eds) Natural resource management in horticultural crops. Today and Tomorrow’s Printers and Publishers, New Delhi, pp 161–185

    Google Scholar 

  • Bender SF, Wagg C, Van Der Heijden MGA (2016) An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31(6):440–452. https://doi.org/10.1016/j.tree.2016.02.016

    Article  PubMed  Google Scholar 

  • Bessou C, Chase LDC, Henson IE, Abdul-Manan AFN, Canals LM, Agus F, Sharma M, Chin M (2014) Pilot application of palm GHG, the round table on sustainable palm oil green house gas calculator for oil palm products. J Clean Prod 73:136–145

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Bio-fertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66

    Article  Google Scholar 

  • BLRS Annual Report (1997) Agronomy, crop protection, vol 1. P.T.P.P. London Sumatra Indonesia Tbk Pusat Penelitian Bah Lias—Bah Lias Research Station, Sumatra

    Google Scholar 

  • Bokhtiar SM, Sakurai K (2005) Effects of organic manure and chemical fertilizers on soil fertility and productivity of plant and ratoon crops of sugarcane. Arch Agron Soil Sci 51:325–334

    Article  Google Scholar 

  • Brandão F, Schoneveld G, Pacheco P, Vieira I, Piraux M, Mota D (2021) The challenge of reconciling conservation and development in the tropics: lessons from Brazil’s oil palm governance model. World Dev 139:105268. https://doi.org/10.1016/j.worlddev.2020.105268

    Article  Google Scholar 

  • Broeshart H, Ferwerda JJD, Kovachich WG (1957) Mineral deficiency symptoms of the oil palm. Plant Soil 8:289–300

    Article  CAS  Google Scholar 

  • Bukhari NA, Loh SK, Nasrin AB, Sukiran MA, Ngatiman M, Daryl JT, Nordiana MS, Soon LW, Choo YM (2014) Composting of oil palm biomass: current status in Malaysia. Bioresour Technol 100:2867–2873

    Google Scholar 

  • Buresh RJ, Tian G (1998) Soil improvement by trees in sub-Saharan Africa. In: Nair PKR, Latt CR (eds) Directions in tropical agroforestry research. Springer, Dordrecht, pp 51–76

    Chapter  Google Scholar 

  • Caliman JP, Daniel C, Tailliez B (1994) Oil palm mineral nutrition. Plant Réch Dév 1:36–54

    CAS  Google Scholar 

  • Caliman JP, Budi M, Salètes S (2001) Dynamics of nutrient release from empty fruit bunches in field conditions and soil characteristics changes. In: Proceedings of the 2001 PIPOC international palm oil congress. MPOB, Bangi, pp 550–556

    Google Scholar 

  • Calugar A, Ivan O (2016) Soil microarthropods and their bioindicator value regarding the bio-edaphic conditions in forest ecosystems of Danube Delta. Studia Universitatis Vasile Goldis: Seria Stiintele Vietii 26:215–219

    Google Scholar 

  • CARDI (2010) A manual on integrated farming system. Caribbean Agricultural Research and Development Institute, Ministry of Economic Development, Belize, pp 1–58

    Google Scholar 

  • Carrión O, Gibson L, Elias DMO, McNamara N, Alen TAV, Op den Camp HJM, Supramaniam CV, McGeity TJ, Murrell JC (2020) Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation. Microbiome 8:81. https://doi.org/10.1186/s40168-020-00860-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carron MP, Pierrat M, Snoeck D et al (2015a) Temporal variability in soil quality after organic residue application in mature oil palm plantations. Soil Res 53(2):205–215. https://doi.org/10.1071/SR14249

    Article  Google Scholar 

  • Carron MP, Auriac Q, Snoeck D, Villenave C, Ribetre F, Suhardi, Marichal R, Caliman JP (2015b) Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. Eur J Soil Biol 66:24–31

    Article  CAS  Google Scholar 

  • Chan KW, Lim KC, Ahmad A (1993) Fertilizer efficiency studies in oil palm. In: Basiron Y, Jalani BS, Chang KC, Cheah SC, Henson IE, Kamaruddin N, Paranjothy K, Rajanaidu N, Tayeb D (eds) Presented at the 1991 PORIM international palm oil conference—agriculture. PORIM, Kuala Lumpur, pp 302–311

    Google Scholar 

  • Chen JH (2006) The combined use of chemical and organic fertilizer and/or bio-fertilizer for crop growth and soil fertility. In: Proceedings of the international workshop on sustained management of the soil—rhizosphere system for efficient crop production and fertilizer use, Bangkok, Thailand, pp 1–11

    Google Scholar 

  • Chukwu ED, Udoh BT, Okoli NH, Nnabuihe E (2020) Soil microbial activities influenced by oil palm cultivation in a coastal plain sands area of Akwa Ibom State, Nigeria. Int J Sci Res Publ 10(5):373–379. https://doi.org/10.29322/IJSRP.10.05.2020.p10143

    Article  Google Scholar 

  • Comte I, Colin F, Grünberger O, Follainc S, Whalena JK, Caliman JP (2013) Landscape-scale assessment of soil response to long-term organic and mineral fertilizer application in an industrial oil palm plantation, Indonesia. Agric Ecosyst Environ 169:58–68

    Article  Google Scholar 

  • Conti FD (2015) Conservation agriculture and soil fauna: only benefits or also potential threats? A review. ECronicon Agric 2:473–482

    Google Scholar 

  • Corley RHV, Tinker PB (eds) (2016) The oil palm, 5th edn. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Da Costa CHM, Crusciol CAC (2016) Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties. Eur J Agron 74:119–132

    Article  Google Scholar 

  • Dalton OS, Mohamed AF, Chikere AO (2017) Status evaluation of palm oil waste management sustainability in Malaysia. OIDA Int J Sustain Dev 10:41–47. http://www.ssrn.com/link/OIDA-Intl-Journal-Sustainable-Dev.html

    Google Scholar 

  • Daniel C, Ochs R (1975) Amélioration de la production des jeunes palmiers_a huile du Pérou par l’emploi d’engrais chloré. Oléagineux 30:295–298

    CAS  Google Scholar 

  • Danso I, Okuere SA, Larbi E, Danso F, Nuertey BN (2019) Assessment of nutrients status of areas supporting optimum oil palm (Elaeis guineensis Jacq. L.) cultivation in Ghana. Ghana J Agric Sci 54(2):1–14. https://doi.org/10.4314/gjas.v54i2.1

    Article  Google Scholar 

  • Danyo G (2013) Commercial oil palm cultivation in Ghana: an outline. ProJ Agric Sci Res 1:22–41

    Google Scholar 

  • de Carvalho ALV, Alves BJR, Baldani VLD, Reis VM (2008) Application of 15N natural abundance technique for evaluating biological nitrogen fixation in oil palm ecotypes at nursery stage in pot experiments and at mature plantation sites. Plant Soil 302:71–78

    Article  Google Scholar 

  • de Jesus Costa LR, de Matos GSB, Gomes MF, Kato OR, Castellani DC, Guedes RS, Vasconcelos SS (2023) Soil fertility in oil palm agroforestry systems in the Eastern Amazon, Brazil. Agrofor Syst 97:865–881. https://doi.org/10.1007/s10457-023-00832-4

    Article  Google Scholar 

  • Dermiyati D, Suharjo R, Telaumbanua M, Yosita R, Sari AW, Andayani AP (2020) Abundance and characterization of microorganisms isolated from oil palm empty fruit bunches waste under aerobic, anaerobic, and facultative anaerobic conditions. Biodiversitas J Biol Divers 21(9):4213–4220. https://doi.org/10.13057/biodiv/d210936

    Article  Google Scholar 

  • Donough CR, Witt C, Fairhurst TH (2009) Yield intensification in oil palm plantations through best management practice. Better Crops Plant Food 93:12–14

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdieck DF (eds) Defining soil quality for a sustainable environment, SSSA special publication no. 35. Soil Science Society of America, Madison, WI, pp 3–21

    Chapter  Google Scholar 

  • Drescher J, Rembold K, Allen K, Beckschäfer P, Buchori D, Clough Y, Faust H, Fauzi AM, Gunawan D, Hertel D, Irawan B, Jaya INS, Klarner B, Kleinn C, Knohl A, Kotowska MM, Krashevska V, Krishna V, Leuschner C, Lorenz W, Meijide A, Melati D, Nomura M, Pérez-Cruzado C, Qaim M, Siregar IZ, Steinebach S, Tjoa A, Tscharntke T, Wick B, Wiegand K, Kreft H, Scheu S (2016) Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos Trans R Soc Lond B Biol Sci 371:20150275. https://doi.org/10.1098/rstb.2015.0275

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubos B, Caliman JP, Corrado F, Quencez P, Suyanto S, Tailliez B (1999) Importance of magnesium nutrition in oil palm e results of several years’ experiments. Plant Rech Dév 6:313–325

    CAS  Google Scholar 

  • Dutta S, Pal R, Chakraborty A, Chakrabarti K (2003) Influence of integrated plant nutrient supply system on soil quality restoration in a red and laterite soil. Arch Agron Soil Sci 49:631–637

    Article  CAS  Google Scholar 

  • Fageria N, Baligar V (2008) Chapter 7: Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    Article  CAS  Google Scholar 

  • FAO (1998) World reference base for soil resources, by ISSS–ISRIC–FAO. World soil resources report no. 84, Rome, p 88

    Google Scholar 

  • Foster HL (1975) The effect of ground management on oil palm nutrition—a review (no. 4), MARDI report. Institiut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI), Malaysia

    Google Scholar 

  • Foster HL, Chang KC, Mohd Tayeb D, Tarmizi AM, Zakaria ZZ (1985) Oil palm yield responses to N and K fertilizers in different environments in Peninsular Malaysia. In: PORIM occasional paper. Palm Oil Research Institute of Malaysia, p 23

    Google Scholar 

  • Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MDF, Broad GR, Chung AYC, Eggleton P, Khen CV, Yusah KM (2011) Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philos Trans R Soc Lond B Biol Sci 366:3277–3291. https://doi.org/10.1098/rstb.2011.0041

    Article  PubMed  PubMed Central  Google Scholar 

  • Fowler D, Nemitz E, Misztal P, Marco CD, Skiba U, Ryder J, Helfter C, Neil Cape J, Owen S, Dorsey J, Gallagher MW, Coyle M, Philips G, Davison B, Langford B, Mackenzie R, Muller J, Siong J, Dari-Salisburgo C, Carl PD, Aruffo E, Giammaria F, Pyle JA, Hewitt CN (2011) Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. Philos Trans R Soc B Biol Sci 366:3196–3209

    Article  CAS  Google Scholar 

  • Fredricksson NJ, Hermansson M, Wilén BM (2014) Impact of T-RFLP data analysis choices on assessments of microbial community structure and dynamics. BMC Bioinformatics 15:360. https://doi.org/10.1186/s12859-014-0360-8

    Article  Google Scholar 

  • Ghazali A, Asmah S, Syafiq M, Yahya MS, Aziz N, Tan LP, Norhisham AR, Puan CL, Turner EC, Azhar B (2016) Effects of monoculture and polyculture farming in oil palm smallholdings on terrestrial arthropod diversity. J Asia Pacific Entomol 19:415–421. https://doi.org/10.1016/j.aspen.2016.04.016

    Article  Google Scholar 

  • Goh KJ (2011) Fertilizer recommendation systems for oil palm: estimating the fertilizer rates. In: Goh KJ, Chiu SB, Paramananthan S (eds) Agronomic principles and practices of oil palm cultivation. Agricultural Crop Trust (ACT), Selangor, pp 338–388

    Google Scholar 

  • Goh KJ, Hardter R (2003) General oil palm nutrition. In: Fairhurst TH, Hardter R (eds) Managing oil palms for large and sustainable yields. Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Potash Institute (IPI), Singapore, pp 191–230

    Google Scholar 

  • Gong L, Ran Q, He G, Tiyip T (2015) A soil quality assessment under different land use types in Keriya river basin, Southern **njiang, China. Soil Tillage Res 146:223–229. https://doi.org/10.1016/j.still.2014.11.001

    Article  Google Scholar 

  • Goodrick I, Nelson PN, Banabas M, Wurster CM, Bird MI (2015) Soil carbon balance following conversion of grassland to oil palm. Glob Change Biol Bioenergy 7:263–272. https://doi.org/10.1111/gcbb.12138

    Article  CAS  Google Scholar 

  • Guillaume T, Holtkamp AM, Damris M, Brummer B, Kuzyakov Y (2016) Soil degradation in oil palm and rubber plantations under land resource scarcity. Agric Ecosyst Environ 232:110–118

    Article  CAS  Google Scholar 

  • Hamilton RL, Trimmer M, Bradley C, Pinay G (2016) Deforestation for oil palm alters the fundamental balance of the soil N cycle. Soil Biol Biochem 95:223–232. https://doi.org/10.1016/j.soilbio.2016.01.001

    Article  CAS  Google Scholar 

  • Hartemink AE (2005) Soil fertility decline in the tropics—with case studies on plantations. https://doi.org/10.1079/9780851996707.0000. Accessed on 10 Oct 2022

  • Hassler E, Corre MD, Kurniawan S, Veldkamp E (2017) Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia. Biogeosciences 14:2781–2798. https://doi.org/10.5194/bg-14-2781-2017

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Barantal S, Ganault P, Gillespie LM, Coq S (2018) Quelsenjeuxsontassociés à la biodiversité des sols? Innov Agron 69:1–14

    Google Scholar 

  • Hedde M (2018) Indicateursbasés sur la faune des sols: des outils pour l’agricultureinnovante? Innov Agron 69:15–26

    Google Scholar 

  • Henuk YL, Hasnudi, Yunilas, Ginting N, Mirwandhono E, Hasanuddin, Ginting J, Bakti D, Rosmayati, Purba E, Hafid H, Kapa MMJ (2018) The integrated farming systems between cattle and oil palm plantation in Indonesia. In: Conference paper, 17th ADRI international conference, 23–24 Apr 2018. Grand Daffam Bela Ternate Hotel, Ternate-Maluku Utara

    Google Scholar 

  • Hergoualc’h K, Hendry DT, Murdiyarso D, Verchot LB (2017) Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry 135:203–220. https://doi.org/10.1007/s10533-017-0363-4

    Article  Google Scholar 

  • Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci Cambridge 145(2):127. https://doi.org/10.1017/S0021859607006892

    Article  Google Scholar 

  • Hoffmann MP, Castaneda Vera A, van Wijk MT, Giller KE, Oberthur T, Doough C, Whitbread AM (2014) Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: model description, evaluation and application. Agric Syst 131:1–10

    Article  Google Scholar 

  • Igue AM, Floquet A, Stahr K (2000) Land use and farming systems in Benin. Adapted farming in West Africa: issues, potentials and perspectives, pp 227–238

    Google Scholar 

  • Imogie AE, Oviasogie PO, Ejedegba BO, Udosen CV (2012) Effect of potassium (K) source on oil palm yield at Okomu oil palm Plc, Ovia North East LGA of Edo state. Int J Plant Res 2:35–38

    Article  Google Scholar 

  • INSAE (2013) Quatrième Recensement Général de la Population et de l’Habitat. INSAE, Cotonou

    Google Scholar 

  • IPNI (2015) Oil palm best management practices in Ghana. International Plant Nutrition Institute mid term report. Available at: http://ssa.ipni.net/ipniweb/region/africa.nsf/0/438DA94552CC5B6085257F15004A8C5D/$FILE/Oil%20palm%20project%20Mid%20term%20report.pdf. Accessed on 20 Oct 2022

  • IPOA (2022) Palm oil industry’s performance in 2022. Available at: https://gapki.id/en/news/22601/palm-oil-industrys-performance-in-2022. Accessed on 21 May 2023

  • Iren OB, Ibanga IJ (2008) The morphological, physical and chemical properties of soils in selected oil palm plantations in Southeastern Nigeria. J Sustain Agric Environ 10(2):160–171

    Google Scholar 

  • Ishizuka S, Iswandi A, Nakajima Y, Yonemura S, Tsuruta H, Murdiyarso D (2005) The variation of greenhouse gas emissions from soils of various land-use/cover types in Jambi province, Indonesia. Nutr Cycling Agroecosyst 71:17–32

    Article  CAS  Google Scholar 

  • Jaafar HZE, Hafiz M (2012) Photosynthesis and quantum yield of oil palm seedlings to elevated carbon dioxide. In: Advances in photosynthesis—fundamental aspects. InTech. https://doi.org/10.5772/26167

    Chapter  Google Scholar 

  • Jacks GV, Whyte RO (1939) The rape of the Earth—a world survey of soil erosion. Faber and Faber, London

    Google Scholar 

  • Jazayeri SM, Mendez YDR, Camperos JE, Romero HM (2015) Physiological effects of water deficit on two oil palm (Elaeis guineensis Jacq.) genotypes. Agron Colomb 33:164–173. https://doi.org/10.15446/agron.colomb.v33n2.49846

    Article  Google Scholar 

  • Jessy Kutty PC, Jayachandran BK, Pandurangan AG (2005) Oil palm based crop** system: an approach to medicinal plants conservation and eco-restoration. In: XVII kerala science congress. KFRI, Peechi, pp 25–27

    Google Scholar 

  • Jose CT, Bhat R, Ismail B, Jayasekhar S (2009) Spatial smoothing technique in field experiments. J Ind Soc Agric Stat 63(2):151–157

    Google Scholar 

  • Karlen DL, Hurley EG, Andrews SS, Cambardella CA et al (2006) Crop rotation effects on soil quality at three northern corn/soybean belt locations. Agron J 98(3):484–495. https://doi.org/10.2134/agronj2005.0098

    Article  Google Scholar 

  • Kee KK (1995) Regional rainfall pattern and climatic limitations for plantation crops in peninsular Malaysia. Planter 71(827):67–78

    Google Scholar 

  • Kee KK, Goh KJ, Chow C, Teo L (2005) Improvement of efficiency of fertilizer applications. In: Chew PS, Tan YP (eds) Proceedings of agronomy and crop management workshops. Presented at the 2004 MOSTA best practices workshop. Malaysian Oil Scientists’ and Technologists’ Association (MOSTA), Petaling Jaya, pp 269–291

    Google Scholar 

  • Kheong LV, Zaharah AR, Hanafi MM, Hussein A (2010) Empty fruit bunch application and oil palm root proliferation. J Oil Palm Res 22:750–757

    Google Scholar 

  • Kibblewhite M, Ritz K, Swift M (2008) Soil health in agricultural systems. Philos Trans R Soc Lond B Biol Sci 363:685–701. https://doi.org/10.1098/rstb.2007.2178

    Article  CAS  PubMed  Google Scholar 

  • Kindohounde NS, Nodichao L, Adoloukpe NSH, Saidou A (2021) Map** of soil nutrient deficiency in oil palm plantations of southern Benin. African Crop Sci J 29(1):141–156

    Article  Google Scholar 

  • Kirk JL, Lee AB, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58(2):169–188

    Article  CAS  PubMed  Google Scholar 

  • Kotowska MM, Leuschner C, Triadiati T (2015) Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob Chang Biol 21:3620–3634

    Article  PubMed  Google Scholar 

  • Kouame K, Camara B, Kone B, Ballo K, Sekou D, Ake S (2017) Bibliographical review about mineral nutrition and fertilization of palm tree (Elaeis guineensis Jacq) at production stage. Int J Agric Environ Res 3:2040–2064

    Google Scholar 

  • Kurniawan S, Corre MD, Utami SR, Veldkamp E (2018) Soil biochemical properties and nutrient leaching from smallholder palm oil plantations, Sumatra-Indonesia. Agrivita J Agric Sci 40(2):257–266. https://doi.org/10.17503/agrivita.v40i2.1723

    Article  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895

    Article  Google Scholar 

  • Lamade E, Boillet JP (2005) Carbon storage and global change: the role of oil palm. Oleagineux Corps Gras Lipides 12:154–160

    Article  Google Scholar 

  • Lauzeral A (1980) Les sols d’Amérique Latine et la culture du palmier_a huile. Oléagineux 35:477–490

    CAS  Google Scholar 

  • Lavelle P, Spain A (2001) Soil ecology. Kluwer Academic Publisher, Dordrecht

    Book  Google Scholar 

  • Li Y, Cui S, Chang SX, Zhang Q (2019) Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis. J Soils Sediments 19:1393–1406

    Article  CAS  Google Scholar 

  • Lo RKS, Chong KP (2020) Metagenomic data of soil microbial community in relation to basal stem rot disease. Data Brief 31:106030. https://doi.org/10.1016/j.dib.2020.106030

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobell DB (2007) The cost of uncertainty for nitrogen fertilizer management: a sensitivity analysis. Field Crop Res 100:210–217

    Article  Google Scholar 

  • Lord S, Clay L (1999) Environmental impacts of oil palm—practical considerations in defining sustainability for impacts on the air, land and water. New Britain Palm Oil Ltd. Centre, Dami Oil Palm Research Station, 38 p

    Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34(2):265–276. https://doi.org/10.1016/j.envint.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  • Manorama K, Behera SK, Suresh K, Prasad MV, Mathur RK, Harinarayana P (2021a) Mulching and technological interventions avoid land degradation in an intensive oil palm (Elaeis guineensis Jacq.) production system. Land Degrad Dev 1:1–13. https://doi.org/10.1002/ldr.3886

    Article  Google Scholar 

  • Manorama K, Behera SK, Suresh K (2021b) Establishing optimal nutrient norms in leaf and soil for oil palm in India. Ind Crop Prod 174:114223. https://doi.org/10.1016/j.indcrop.2021.114223

    Article  CAS  Google Scholar 

  • Mardegan SF, Castro AFD, Chaves SSNF, Freitas RSDS, Avelar MS, Filho TAOT (2022) Organic farming enhances soil carbon and nitrogen dynamics in oil palm crops from Southeast Amazon. Soil Sci Plant Nutr 68(1):104–113. https://doi.org/10.1080/00380768.2022.2031285

    Article  CAS  Google Scholar 

  • Melling L, Chua KH, Lim KH (2011) Agro-management of peat soils under oil palm in Sarawak. In: Goh KJ, Chiu SB, Paramananthan S (eds) Agronomic principles and practices of oil palm cultivation. Agricultural Crop Trust (ACT), Selangor, pp 695–728

    Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of bio-fertilizer for sustainable agriculture and economic development. Consilience J Sustain Dev 11(1):41–61

    Google Scholar 

  • Misson M, Haron R, Kamaroddin MFA, Amin NAS (2009) Pre-treatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour Technol 100(11):2867–2873. https://doi.org/10.1016/j.biortech.2008.12.060

    Article  CAS  PubMed  Google Scholar 

  • Mokolobate MS, Haynes RJ (2002) Increases in pH and soluble salts influence the effect that additions of organic residues have on concentrations of exchangeable and soil solution aluminium. Eur J Soil Sci 53:481–489. https://doi.org/10.1046/j.1365-2389.2002.00465.x

    Article  CAS  Google Scholar 

  • Mole B (2014) Fertilizer produces far more greenhouse gas than expected. Science News: Magazine Soc Sci Public. https://www.sciencenews.org/article/fertilizerproduces-far-more-greenhouse-gas-expected

  • Moradi A, Teh CBS, Goh KJ, Husni MHA, Ishak CF (2014) Decomposition and nutrient release temporal pattern of oil palm residues. Ann Appl Biol 164:208–219

    Article  CAS  Google Scholar 

  • Moradi A, Teh CBS, Goh K, Hanif AHM, Ishak CF (2015) Effect of four soil and water conservation practices on soil physical processes in a non-terraced oil palm plantation. Soil Tillage Res 145:62–71. https://doi.org/10.1016/j.still.2014.08.005

    Article  Google Scholar 

  • MPOB (2014) Oil palm & the environment. Malaysian Palm Oil Board. Available at: http://www.mpob.gov.my/en/palm info/environment/520

    Google Scholar 

  • MPOB (2022) Overview of the Malaysian palm oil industry. Malaysian Palm Oil Board. Available at: https://bepi.mpob.gov.my/images/overview/Overview2022.pdf

    Google Scholar 

  • Murphy DJ, Goggin K, Paterson RRM (2021) Oil palm in the 2020s and beyond: challenges and solutions. CABI Agric Biosci 2:39. https://doi.org/10.1186/s43170-021-00058-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Namanji S, Ssekyewa C, Slingerland M (2021) Intercrop** food crops into oil palm plantations—experiences in Uganda and why it makes sense. Policy brief. Ecological Trends Alliance, Tropenbos International, Kampala, Ede, 4 p

    Google Scholar 

  • Nath AJ, Brahma B, Sileshi GW, Das AK (2018) Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Sci Total Environ 624:908–917. https://doi.org/10.1016/j.scitotenv.2017.12.199

    Article  CAS  PubMed  Google Scholar 

  • Nelson EB, Craft CM (1992) Suppression of dollar spot on cree** bentgrass and annual bluegrass turf with compost-amended top dressings. Plant Dis 76:954–995

    Article  Google Scholar 

  • Ng SK (1986) La nutrition en phosphore et la fertilisation des palmiers_a huile. Oléagineux 41:307–313

    Google Scholar 

  • Ng SK, Thamboo S (1967) Nutrient contents of oil palms in Malaya. 1. Nutrients required for reproduction: fruit bunches and male inflorescence. Malays Agric J 46:1–45

    Google Scholar 

  • Ng SK, Thamboo S, De Souza P (1968) Nutrient contents of oil palms in Malaya. 2. Nutrients in vegetative tissues. Malaysian Agric J 46:61–113

    Google Scholar 

  • Niswati A, Romelah S, Dermiyati, Tugiyono (2021) Integrated farming system of cattle and oil palm plantation increasing population and diversity of soil fauna in Ultisols soils. IOP Conf Ser Earth Environ Sci 648:012172. https://iopscience.iop.org/article/10.1088/1755-1315/648/1/012172/meta. Accessed on 25 Oct 2022

    Article  Google Scholar 

  • Ogendengbe HD (1991) The nutrient status of Okomu oil palm plantation. MSc thesis. University of Ibadan, Nigeria

    Google Scholar 

  • Ollagnier M, Ochs R, Martin G (1970) La fumure du palmier_a huile dans le monde. Fertilité 36:64

    Google Scholar 

  • Ollagnier M, Daniel C, Fallavier P, Ochs R (1987) The influence of climate and soil on potassium critical level in oil palm leaf analysis. Oléagineux 42:446–450

    Google Scholar 

  • Om AZ, Ghazali AHA, Keng CL, Ishak Z (2009) Microbial inoculation improves growth of oil palm plants (Elaeis guineensis Jacq.). Trop Life Sci Res 20:71–77

    PubMed  PubMed Central  Google Scholar 

  • Pacheco AR, Tailliez BJ, Rocha de Souza EJ (1985) Les déficiences minérales du palmier_a huile dans la région du Bel_e m, Par_a (Brésil). Oléagineux 40:295–309

    CAS  Google Scholar 

  • Paramananthan S (2000) Soil requirements of oil palm for high yields. In: Goh KJ (ed) Managing oil palm for high yields: agronomic principles. Malaysian Society of Soil Science and Param Agricultural Surveys, Kuala Lumpur, pp 18–38

    Google Scholar 

  • Paterson RRM, Lima N (2018) Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration. Ecol Evol 8(1):452–461

    Article  PubMed  Google Scholar 

  • Paterson RRM, Kumar L, Shabani F, Lina N (2017) World climate suitability projections to 2050 and 2100 for growing oil palm. J Agric Sci 155(5):689–702

    Article  Google Scholar 

  • Phicot JMP, Sedego MP, Arrivers HF (1981) Evaluation de la fertilite dun sol ferrugineux tropical sous l influence de femures milnerales et oganiques. L’ Agron Trop 36(2):122–133

    Google Scholar 

  • Prasad MV, Sairam CV, Arulraj S, Jameema J (2012) Estimation of cost of production of oil palm in Andhra Pradesh. In: Abstracts of paper, plantation crops symposium XX, Coimbatore, p 136

    Google Scholar 

  • Pulhina FB, Rodel DL, Urquiola JP (2014) Carbon sequestration potential of oil palm in Bohol, Philippines. Ecosyst Dev J 4(2):14–19

    Google Scholar 

  • Pupathy UT, Paramananthan S (2014) Agro-management for oil palms planted on acid sulphate soils. Sel Papers Soil Sci 1:85–101

    Google Scholar 

  • Pupathy UT, Sundian N (2020) Key agronomic management factors for maximising oil palm (Elaeis guineensis Jacq.) yields on acid sulphate soils in Malaysia and Indonesia. IOP Conf Series Earth Environ Sci 454:012171. https://doi.org/10.1088/1755-1315/454/1/012171

    Article  Google Scholar 

  • Purwoko D, Safarrida A, Tajuddin T, Rupaedah B, Suyono A, Wahid A, Sugianto M, Suja I (2022) Metagenomic data of microbial in natural empty fruit bunches degradation. Data Brief 41:107967. https://doi.org/10.1016/j.dib.2022.107967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushparajah E, Chew PS (1979) Utilization of soil and plant analyses for plantation agriculture. In: The proceedings of the malaysian seminar on the fertility and management of deforested land. Society of Agricultural Scientists, Sabah, Kota Kinabalu, pp 177–199

    Google Scholar 

  • Pushparajah E, Ng SK, Ratnasingam K (1973) Leaching losses of nitrogen, potassium and magnesium on Peninsular Malaysian soils. In: Preprint of Conference of fertilizer and chemistry in tropical soils. Presented at the Conference of fertilizer and chemistry in tropical soils. Malaysian Society of Soil Science, Kuala Lumpur, pp 121–129

    Google Scholar 

  • Rahman N, Giller KE, de Neergaard A, Magid J, Van de van G, Bruun TB (2021) The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. J Environ Manag 278:111446. https://doi.org/10.1016/j.jenvman.2020.111446

    Article  CAS  Google Scholar 

  • Ramachandrudu K (2019) Oil palm based systems approach for higher net income. In: Manorama K, Suresh K (eds) Recent advances in oil palm production and special emphasis on emergence of new pest and its management, pp 120–126

    Google Scholar 

  • Ramachandrudu K, Suneetha V, Suresh K, Rao BN, Manorama K (2018) Systems approach in oil palm for higher productivity and profitability. Technical bulletin, Indian Institute of Oil Palm Research, Pedavegi, Andhra Pradesh, pp 1–52

    Google Scholar 

  • Rao KK (2009) Effect of different methods of irrigation and nutrient requirement on yield of oil palm. Int J Oil Palm 6(1):31–34

    Google Scholar 

  • Rao BN, Suresh K, Behera SK, Ramachandrudu K, Manorama K (2014) Nutrient management in oil palm. Technical bulletin. Directorate of Oil Palm Research, Pedavegi, pp 1–24

    Google Scholar 

  • Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS One 14(5):e0217148. https://doi.org/10.1371/journal.pone.0217148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy BGM, Patil DR, Pattara AS, Shetty H (2009) Irrigation and NPK requirement of oil palm for Tungabhadra command area. Int J Oil Palm 6(1):35–38

    CAS  Google Scholar 

  • Rivera Mendez YD, Chacon LM, Bayona CJ, Romero HM (2012) Physiological response of oil palm interspecific hybrids (Elaeis oleifera H.B.K. Cortes versus Elaeis guineensis Jacq.) to water deficit. Braz J Plant Physiol 24:273–280. https://doi.org/10.1590/S1677-04202012000400006

    Article  Google Scholar 

  • Rivera YD, Cuenca JC, Romero HM (2016) Physiological responses of oil palm (Elaeis guineensis Jacq.) seedlings under different water soil conditions. Agron Colombiana 34(2):163–171. https://doi.org/10.15446/agron.colomb.v34n2.55568

    Article  Google Scholar 

  • Robe P, Nalin R, Carpellano C (2013) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    Article  Google Scholar 

  • Rolf D (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  Google Scholar 

  • Rosenani AB, Zauyah S, Kulaseharan S, Jamaluddin N (2011) Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutr Cycl Agroecosyst 89:341–349

    Article  Google Scholar 

  • Rosli NS, Harun S, Jahim JM, Othaman R (2017) Chemical and physical characterization of oil palm empty fruit bunch. Malaysian J Anal Sci 21(1):188–196

    Article  Google Scholar 

  • Ruthenberg H (1972) Farming systems in the tropics. Clarendon Press, Oxford, 344 p

    Google Scholar 

  • Sabiani NHM, Awang N (2022) Aerobic composting of oil palm fronds—a review. Appl Ecol Environ Res 20(3):2509–2533. https://doi.org/10.15666/aeer/2003_25092533

    Article  Google Scholar 

  • Sabrina DT, Hanafi MM, Aziz NAA, Mohamed MTM (2009) Earthworm populations and cast properties in the oil palm plantations. Malaysian J Soil Sci 13:29–42

    Google Scholar 

  • Sadoma MT, El-Sayed ABB, El-Moghazy SM (2011) Biological control of downy mildew disease of maize caused by Peronosclerospora sorghi using certain biocontrol agents alone or in combination. J Agric Res 37:1–11

    Google Scholar 

  • Saijo S, Yahya S, Hidayat Y, Rosawanti P (2022) Application of empty fruit bunches of oil palm and Indigofera zollingeriana for conservation of oil palm plantation. Planta Trop J Agrosains 10(2):160–168. https://doi.org/10.18196/pt.v10i2.15467

    Article  Google Scholar 

  • Salètes S, Siregar FA, Caliman JP, Liwang T (2004) Ligno-cellulose composting: case study on monitoring oil palm residuals. Compost Sci Util 12(4):372–382

    Article  Google Scholar 

  • Santiago BB, Magdalena LU, Vanwalleghem T, Machuka MAH (2017) Effects of land use change on soil quality indicators in forest landscapes of the western Amazon. Soil Sci 182(4):128–136

    Article  Google Scholar 

  • Sanyal SK, Dwivedi BS, Singh VK, Majumdar K, Datta SC, Pattanayak SK, Annapurna K (2015) Phosphorus in relation to dominant crop** sequences in India: chemistry, fertility relations and management options. Curr Sci 108(7):1262–1270

    CAS  Google Scholar 

  • Satriawan H, Fuady Z, Agusni (2017) Soil conservation techniques in oil palm cultivation for sustainable agriculture. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 7(2):178–183

    Google Scholar 

  • Schuchardt F, Darnoko D, Guritno P (2002) Composting of empty oil palm fruit bunch (EFB) with simultaneous evaporation of oil mill waste water (POME). In: Proceedings of international oil palm conference, Nusa Dua, Bali, Indonesia, 8–12 Jul 2002. Bali, Nusa Dua

    Google Scholar 

  • Senjobi BA (2007) Comparative assessment of the effect of land use and land type on soil degradation and productivity in Ogun State, Nigeria. Published PhD thesis submitted to the Department of Agronomy, University of Ibadan, Ibadan, 161 p

    Google Scholar 

  • Setiadi BK, Diwyanto W, Puastuti IGAP (2011) Peta Potensi dan Sebaran Areal Perkebunan Kelapa Sawit di Indonesia: Sistem Integrasi Sapi-Kelapa Sawit (SISKA). In: Pusat Penelitian dan Pengembangan Peternakan, Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, Jakarta

    Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme Microb Technol 40(4):961–968

    Article  CAS  Google Scholar 

  • Sharma P, Laor Y, Raviv M, Medina S, Saadi I, Krasnovsky A, Vager M, Levy GJ, Bar-Tal A, Borisover M (2017) Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil. Geoderma 286:73–82. https://doi.org/10.1016/j.geoderma.2016.10.014

    Article  CAS  Google Scholar 

  • Siddiquee S, Yusuf UK, Hossain K, Sarwar J (2009) In vitro studies on the potential Trichoderma harzianum for antagonistic properties against Ganoderma boninense. J Food Agric Environ 7:970–976

    Google Scholar 

  • Singh B, Ryan J (2015) Managing fertilizers to enhance soil health. Paris, International Fertilizer Industry Association (IFA), p 24

    Google Scholar 

  • Singh G, Kow DL, Lee KC, Loong SG (1999) Empty fruit bunches as mulch. In: Singh G (ed) Oil palm and the environment—a Malaysian perspective. Malaysian Palm Oil Growers’ Council, Kuala Lumpur, pp 171–183

    Google Scholar 

  • Singh M, Singh D, Gupta A, Pandey KD, Singh PK, Kumar A (2019) Plant growth promoting rhizobacteria: application in bio-fertilizers and biocontrol of phytopathogens. In: PGPR amelioration in sustainable agriculture. Elsevier, pp 41–66. https://doi.org/10.1016/B978-0-12-815879-1.00003-3

    Chapter  Google Scholar 

  • Situmorang EC, Nugroho YA, Wicaksono WA (2014) Impact of empty fruit bunches application on soil bacterial biodiversity in oil palm plantation. In: ICOPE 2014: oil palm cultivation: becoming a model for tomorrow’s sustainable agriculture, Cirad, PT SMART and WWF, Bali, Indonesia, 12–14 Feb 2014

    Google Scholar 

  • Situmorang EC, Prameswara A, Sinthya HC, Mathius TN, Liwang T (2015) Indigenous phosphate solubilizing bacteria from peat soil for an eco-friendly bio-fertilizer in oil palm plantation. KnE Energy 1:65–72

    Article  Google Scholar 

  • Situmorang EK, Nugroho YA, Prameswara A, Andarini E, Hartono, Setyobudi RH, Toruan-Mathius N, Liwang T (2016) The bacterial diversity investigation in oil palm plantation using terminal restriction length polymorphism. AIP Conf Proc 1744:020017. https://doi.org/10.1063/1.4953491

    Article  Google Scholar 

  • Solomon O, Okolo C (2008) Small scale oil palm farmers perception of organic agriculture in Imo state, Nigeria. J Environ Extension 7:67–71

    Google Scholar 

  • Soumare A, Boubekri K, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L (2020) From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: status and needs. Front Bioeng Biotechnol 7:425

    Article  PubMed  PubMed Central  Google Scholar 

  • Stichnothe H, Bessou C (2017) Challenges for life cycle assessment of palm oil production system. Indonesian J Life Cycle Assess Sustain 1:1–9

    Article  Google Scholar 

  • Storesund JE, Lanzèn A, Nordmann E-L, Armo HR, Lage OM, Ovreas L (2020) Planctomycetes as a vital constituent of the microbial communities inhabiting different layers of the Meromictic Lake Sælenvannet (Norway). Microorganisms 8(8):1150. https://doi.org/10.3390/microorganisms8081150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundram S (2013) The effect of Trichoderma in surface mulches supplemented with conidial drenches for the suppression of Ganoderma basal stem rot in oil palm. J Oil Palm Res 25:314–325

    Google Scholar 

  • Sundram S, Abdullah F, Zainal AM, Umi KY (2008) Efficacy of single and mixed treatments of Trichoderma harzianum as biocontrol agents of Ganoderma basal stem rot in oil palm. J Oil Palm Res 20:470–483

    Google Scholar 

  • Sundram S, Sariah M, Idris AS, Radziah O (2011) Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. J Microbiol 49:551–557

    Article  PubMed  Google Scholar 

  • Sundram S, Meon S, Seman IA, Othman R (2015) Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings. Mycorrhiza 25:387–397

    Article  CAS  PubMed  Google Scholar 

  • Sunitha S, Krishnakumar T (2006) Biomass production and potential nutrient contribution from oil palm at felling. J Plantn Crops 34(3):309–311

    Google Scholar 

  • Suresh K, Kiran Kumar M (2011) Carbon sequestration potential of oil palm under irrigated and rainfed condition. Indian J Dry Land Agric Res Dev 26(2):55–57

    Google Scholar 

  • Suresh K, Reddy VM (2004) Studies on nutrient and water management of oil palm. NRCOP annual report, pp 43–45

    Google Scholar 

  • Suresh K, Reddy VM (2009) Oil palm based crop** systems under irrigated conditions-Indian scenario. In: Proceedings of national conference on oil palm, Vijayawada, 2–4 Feb 2008, pp 155–161

    Google Scholar 

  • Suresh K, Reddy VM, Sarma KN (2003) Quantification of root biomass in oil palm grown under basin irrigation. Int J Oil Palm 2(3–4):39–41

    Google Scholar 

  • Suresh K, Reddy VM, Kochu Babu M (2008) Biomass, carbon and nitrogen distribution with leaf age in oil palm. In: Poster presented in the third Indian horticultural congress, Bhubaneswar, 6–9 Nov 2008

    Google Scholar 

  • Suresh K, Behera SK, Manorama K, Rao BN (2017) Oil palm. In: Hebbar KB, Naresh Kumar S, Chowdappa P (eds) Impact of climate change on plantation crops. Astral International Pvt. Ltd., New Delhi, pp 101–122

    Google Scholar 

  • Tahir AA, Mohd Barnoh NF, Yusof N, Said NNM, Utsumi M, Yen AM, Hashim H, Noor MJMM, Akhir FNM, Mohamad SEM, Sugiura N, Othman NA, Zakaria Z, Hara H (2019) Microbial diversity in decaying oil palm empty fruit bunches (OPEFB) and isolation of lignin-degrading bacteria from a tropical environment. Microbes Environ 34(2):161–168. https://doi.org/10.1264/jsme2.ME18117

    Article  PubMed  PubMed Central  Google Scholar 

  • Tampubolon FH, Daniel C, Ochs R (1990) Réponses du palmier_a huile aux fumures azotées et phosphorées_a Sumatra. Oléagineux 45:475–486

    Google Scholar 

  • Tao HH, Slade EM, Willis KJ, Caliman JP, Snaddon JLS (2016) Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agric Ecosyst Environ 218:133–140. https://doi.org/10.1016/j.agee.2015.11.012

    Article  Google Scholar 

  • Tao HH, Snaddon JL, Slade EM (2017) Long-term crop residue application maintains oil palm yield and temporal stability of production. Agron Sustain Dev 37:33. https://doi.org/10.1007/s13593-017-0439-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarigan S, Suhardi, Wahyuningsih R, Pujianto PA, Wahyuningsih RM, Caliman JP (2019) The role of oil palm biomass recycling on soil health in oil palm plantations. IOP Conf Series Earth Environ Sci 336:012019. https://doi.org/10.1088/1755-1315/336/1/012019

    Article  Google Scholar 

  • Tarmizi AM, Dolmat MTH, Zakaria ZZ (1992) Maximum yield of oil palm in peninsular Malaysia: yield response and efficiency of nutrient recovery. In: Presented at the 1990 ISOPB international workshop on yield potential in the oil palm, Oct 29–30. Palm Oil Research Inst of Malaysia, Phuket, pp 145–153

    Google Scholar 

  • Teo L, Muhammad Shukri R, Ong KP, Zainurah A (2010) Alternative oil palm fertilizer sources and management. Oil palm bulletin no. 61, pp 11–32

    Google Scholar 

  • Teoh KC, Chew PS (1984) Investigations on areas and frequencies of fertilizer application in mature oil palms. In: Bachik AT, Pushparajah E (eds) Proceedings of the international conference on soils and nutrition of perennial crops. Presented at the international conference on soils and nutrition of perennial crops, 13–15 Aug 1984. Malaysian Society of Soil Science (MSSS), Kuala Lumpur, pp 375–387

    Google Scholar 

  • Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37:174–178

    Article  CAS  PubMed  Google Scholar 

  • Tiemann TT, Donough CR, Lim YL, Hardter R, Norton R, Tao HH, Jaramillo R, Satyanarayana T, Zingore S, Oberthur T (2018) Chapter 4: Feeding the palm: a review of oil palm nutrition. Adv Agron 152:149–243

    Article  Google Scholar 

  • Tinker PB (1976) Soil requirements of the oil palm. In: Corley RHV, Hardon JJ, Wood BJ (eds) Developments in crop science. I: Oil palm research. Elsevier, Amsterdam, pp 165–174

    Google Scholar 

  • Tinker PBH, Smilde KW (1963) Dry-matter production and nutrient content of plantation oil palms in Nigeria: II. Nutrient content. Plant Soil 19:350–363

    Article  Google Scholar 

  • Tohiruddin L, Foster HL (2013) Superior effect of compost derived from palm oil mill by-products as a replacement for inorganic fertilizers applied to oil palm. J Oil Palm Res 25(1):123–137

    Google Scholar 

  • Tóth G, Guicharnaud R-A, Tóth B et al (2014) Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur J Agron 55:42–52. https://doi.org/10.1016/j.eja.2013.12.008

    Article  CAS  Google Scholar 

  • Tripathi B, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Rusea G, Rahim RA, Husni MHA, Chun J, Adams JM (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microbial Ecol 64:474–484. https://doi.org/10.1007/s00248-012-0028-8

    Article  Google Scholar 

  • USDA (2019) Agricultural Marketing Service—National Organic Program. National Organic Standards Board (NOSB) policy and procedures manual. Available at: https://www.ams.usda.gov/about-ams/programs-offices/national-organicprogram

  • USDA (2022) Oilseeds and products update. Available at: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Oilseeds%20and%20Products%20Update_Jakarta_Indonesia_ID2022-0021. Accessed on 21 May 2023

  • Vargas LEP, Laurance WF, Clements GR, Edwards W (2015) The impacts of oil palm agriculture on Colombia’s biodiversity: what we know and still need to know. Trop Conserv Sci 8:828–845. https://doi.org/10.1177/194008291500800317

    Article  Google Scholar 

  • Varghese PT, Sunitha S (2005) Natural resource management-soil and water conservation techniques and land use systems. NRCOP annual report, pp 44–45

    Google Scholar 

  • Varghese PT, Sunitha S, Nampoorthiri KUK (2007) Integrated plant nutrient management in oil palm plantation through recycling of palm wastes. In: Recent advances in plantation crops research, pp 130–133

    Google Scholar 

  • Velthof GL, Lesschen JP, Webb J, Pietzak S, Miatkowski Z, Pinto M, Kros J, Oenema O (2014) The impact of the nitrates directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008. Sci Total Environ 468–469:1225–1233

    Article  PubMed  Google Scholar 

  • Verheye W (2010) Growth and production of oil palm. In: Land use, land cover and soil sciences. UNESCO-EOLSS Publishers

    Google Scholar 

  • Vijiandran JR, Husni MHA, Teh CBS, Zaharah AR, Xaviar A, Ho SH (2020) Leaching losses of nutrients on matured oil palms fertilized with straight and compound fertilizers. In: Malaysian soil science conference 2020 (Soils 2020), Johor Bahru, Malaysia

    Google Scholar 

  • von Uexkull HR, Fairhurst TH (1991) Fertilizing for high yield and quality. The oil palm. IPI, Bern, 79 p

    Google Scholar 

  • Wigena IDP, Sudrajat Sitorus SRP, Siregar H (2009) Soil and climate characterization and its suitability for nucleus smallholder oil palm at Sei Pagar, Kampar District, Riau Province. J Soil Clim 30:1–16

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468. https://doi.org/10.1073/pnas.96.4.1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahya A, Sye CP, Ishola TA et al (2010a) Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches. Bioresour Technol 101:8736–8741

    Article  CAS  PubMed  Google Scholar 

  • Yahya Z, Husin A, Talib J et al (2010b) Soil compaction and oil palm (Elaeis guineensis) yield in a clay textured oil. Am J Agric Biol Sci 5:15–19

    Article  Google Scholar 

  • Yan X, Gong W (2010) The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration-results of a 19-year experiment. Plant Soil 331:471–480

    Article  CAS  Google Scholar 

  • Zaharah AR, Lim KC (2000) Oil palm empty fruit bunch as a source of nutrients and soil ameliorant in oil palm plantations. Malaysian J Soil Sci 4:51–56

    Google Scholar 

  • Zaidi A, Khan MS, Saif S, Asfa R, Ahmed B, Shahid M (2017) Role of nitrogen-fixing plant growth-promoting rhizobacteria in sustainable production of vegetables: current perspective. In: Microbial strategies for vegetable production. Springer, Berlin/Heidelberg, pp 49–79

    Chapter  Google Scholar 

  • Zakry FAA, Zulkifli HS, Khairuddin A, Zakaria ZZ, Rahim AA (2012) Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the N isotope dilution technique. Microbes Environ 27(3):257–262. https://doi.org/10.1264/jsme2.ME11309. http://wwwsoc.nii.ac.jp/jsme2/

    Article  PubMed  PubMed Central  Google Scholar 

  • Zomer RJ, Bossio DA, Sommer R, Verchot LV (2017) Global sequestration potential of increased organic carbon in cropland soils. Sci Rep 7:15554. https://doi.org/10.1038/s41598-017-15794-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulkifli H, Halimah M, Chan KW, Choo YM, Wahid MB (2010) Life cycle assessment for oil palm fresh fruit bunch production from continued land use for oil palm planted on mineral soil (part 2). J Oil Palm Res 22:887–894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Manorama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manorama, K., Behera, S.K., Suresh, K. (2024). Oil Palm (Elaeis guineensis Jacq). In: Thomas, G.V., Krishnakumar, V. (eds) Soil Health Management for Plantation Crops. Springer, Singapore. https://doi.org/10.1007/978-981-97-0092-9_3

Download citation

Publish with us

Policies and ethics

Navigation