Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

The notion of quantum divergences has played a significant role in quantum information, which defines important quantum quantities to discriminate between states of a quantum system. A quantum system is mathematically described, in most cases, by an operator algebra \(\mathcal {A}\) on a Hilbert space, either finite-dimensional or infinite-dimensional, and a quantum divergence is generally given as a function S(ψφ) of two states or more generally, two positive linear functionals ψ and φ on \(\mathcal {A}\). This monograph is aimed at presenting a comprehensive survey of quantum f-divergences and showing their significant role in the reversibility problem of quantum operations in the general von Neumann algebra setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accardi, L., Cecchini, C.: Conditional expectations in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45, 245–273 (1982)

    Article  MathSciNet  Google Scholar 

  2. Araki, H.: Relative entropy of states of von Neumann algebras. Publ. Res. Inst. Math. Sci. 11, 809–833 (1976)

    Article  MathSciNet  Google Scholar 

  3. Araki, H.: Relative entropy for states of von Neumann algebras II. Publ. Res. Inst. Math. Sci. 13, 173–192 (1977)

    Article  MathSciNet  Google Scholar 

  4. Belavkin, V.P., Staszewski, P.: C -algebraic generalization of relative entropy and entropy. Ann. Inst. H. Poincaré Phys. Théor. 37, 51–58 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Berta, M., Scholz, V.B., Tomamichel, M.: Rényi divergences as weighted non-commutative vector valued L p-spaces. Ann. Henri Poincaré 19, 1843–1867 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1, 2nd edn. Springer, New York (1987)

    Book  Google Scholar 

  7. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2, 2nd edn. Springer, Berlin (1997)

    Book  Google Scholar 

  8. Connes, A.: Sur le théoème de Radon-Nikodym pour les poids normaux fidéles semi-finis. Bull. Sci. Math. (2) 97, 253–258 (1973)

    Google Scholar 

  9. Dixmier, J.: Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. France 81, 9–39 (1953)

    Article  MathSciNet  Google Scholar 

  10. Hayashi, M.: Quantum Information. An Introduction. Springer, Berlin (2006)

    Google Scholar 

  11. Hiai, F.: Quantum f-divergences in von Neumann algebras I. Standard f-divergences. J. Math. Phys. 59, 102202, 27 pp. (2018)

    Google Scholar 

  12. Hiai, F.: Quantum f-divergences in von Neumann algebras II. Maximal f-divergences. J. Math. Phys. 60, 012203, 30 pp. (2019)

    Google Scholar 

  13. Hiai, F., Mosonyi, M.: Different quantum f-divergences and the reversibility of quantum operations. Rev. Math. Phys. 29, 1750023, 80 pp. (2017)

    Google Scholar 

  14. Hiai, F., Ohya, M., Tsukada, M.: Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacif. J. Math. 96, 99–109 (1981)

    MATH  Google Scholar 

  15. Hiai, F., Ohya, M., Tsukada, M.: Sufficiency and relative entropy in *-algebras with applications in quantum systems. Pacif. J. Math. 107, 117–140 (1983)

    Article  MathSciNet  Google Scholar 

  16. Hiai, F., Mosonyi, M., Petz, D., Bény, C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23, 691–747 (2011); Erratum: Quantum f-divergences and error correction. Rev. Math. Phys. 29, 1792001, 2 pp. (2017)

    Google Scholar 

  17. Jenčová, A.: Reversibility conditions for quantum operations. Rev. Math. Phys. 24, 1250016, 26 pp. (2012)

    Google Scholar 

  18. Jenčová, A.: Rényi relative entropies and noncommutative L p-spaces. Ann. Henri Poincaré 19, 2513–2542 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jenčová, A.: Rényi relative entropies and noncommutative L p-spaces II (2020). ar**v:1707.00047v2 [quant-ph]

    Google Scholar 

  20. Jenčová, A., Petz, D.: Sufficiency in quantum statistical inference. Commun. Math. Phys. 263, 259–276 (2006)

    Article  MathSciNet  Google Scholar 

  21. Jenčová, A., Petz, D.: Sufficiency in quantum statistical inference. A survey with examples. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 331–351 (2006)

    Article  MathSciNet  Google Scholar 

  22. Kosaki, H.: Relative entropy of states: a variational expression. J. Oper. Theory 16, 335–348 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980)

    Article  MathSciNet  Google Scholar 

  24. Łuczak, A.: Quantum sufficiency in the operator algebra framework. Int. J. Theor. Phys. 53, 3423–3433 (2014)

    Article  MathSciNet  Google Scholar 

  25. Łuczak, A.: On a general concept of sufficiency in von Neumann algebras. Probab. Math. Stat. 35, 313–324 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Matsumoto, K.: On single-copy maximization of measured f-divergences between a given pair of quantum states (2016). Preprint. ar**v:1412.3676v5 [quant-ph]

    Google Scholar 

  27. Matsumoto, K.: A new quantum version of f-divergence. In: Reality and Measurement in Algebraic Quantum Theory. Springer Proceedings in Mathematics & Statistics, vol. 261, pp. 229–273. Springer, Singapore (2018)

    Google Scholar 

  28. Mosonyi, M., Ogawa, T.: Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. Commun. Math. Phys. 334, 1617–1648 (2015)

    Article  Google Scholar 

  29. Mosonyi, M., Ogawa, T.: Strong converse exponent for classical-quantum channel coding. Commun. Math. Phys. 355, 373–426 (2017)

    Article  MathSciNet  Google Scholar 

  30. Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974)

    Article  MathSciNet  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993); 2nd edn. (2004)

    Google Scholar 

  33. Petz, D.: Quasi-entropies for states of a von Neumann algebra. Publ. Res. Inst. Math. Sci. 21, 787–800 (1985)

    Article  MathSciNet  Google Scholar 

  34. Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23, 57–65 (1986)

    Article  MathSciNet  Google Scholar 

  35. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, 123–131 (1986)

    Article  MathSciNet  Google Scholar 

  36. Petz, D.: Sufficiency of channels over von Neumann algebras. Quart. J. Math. Oxford Ser. (2) 39, 97–108 (1988)

    Google Scholar 

  37. Petz, D.: Discrimination between states of a quantum system by observations. J. Funct. Anal. 120, 82–97 (1994)

    Article  MathSciNet  Google Scholar 

  38. Petz, D.: Quantum Information Theory and Quantum Statistics. Theoretical and Mathematical Physics. Springer, Berlin (2008)

    Google Scholar 

  39. Segal, I.E.: A non-commutative extension of abstract integration. Ann. Math. (2) 57, 401–457 (1953); Correction to “A non-commutative extension of abstract integration” 58, 595–596 (1953)

    Google Scholar 

  40. Tomamichel, M.: Quantum Information Processing with Finite Resources. Mathematical Foundations. SpringerBriefs in Mathematical Physics, vol. 5. Springer, Cham (2016)

    Google Scholar 

  41. Umegaki, H.: Conditional expectation in an operator algebra, III. Kōdai Math. Sem. Rep. 11, 51–64 (1959)

    Article  MathSciNet  Google Scholar 

  42. Umegaki, H.: Conditional expectation in an operator algebra, IV (entropy and information). Kōdai Math. Sem. Rep. 14, 59–85 (1962)

    Article  MathSciNet  Google Scholar 

  43. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013); 2nd edn. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hiai, F. (2021). Introduction. In: Quantum f-Divergences in von Neumann Algebras. Mathematical Physics Studies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4199-9_1

Download citation

Publish with us

Policies and ethics

Navigation