Wavelet-Based Analytical Expressions to Steady-State Biofilm Model Arising in Biochemical Engineering

  • Chapter
  • First Online:
Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 605 Accesses

Abstract

In this chapter, we have developed an efficient wavelet-based approximation method to biofilm model under steady state arising in enzyme kinetics. Chebyshev wavelet-based approximation method is successfully introduced in solving nonlinear steady-state biofilm reaction model. Analytical solutions for substrate concentration have been derived for all values of the parameters \(\delta\) and SL. The power of the manageable method is confirmed. Some numerical examples are presented to demonstrate the validity and applicability of the wavelet method. Moreover, the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs, and computationally attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 53.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Muthukaruppan, A. Eswari, Lakshmanan Rajendran, Mathematical modeling of a biofilm: the adomian decomposition method. Nat. Sci. 5(4), 456–462 (2013)

    Google Scholar 

  2. S. Usha, S. Anitha, L. Rajendran, Approximate analytical solution of non-linear reaction diffusion equation in fluidized bed biofilm reactor. Nat. Sci. 12(4), 983–991 (2012)

    Google Scholar 

  3. K.R. Rao, T. Srinivasan, C. Venkateswarlu, Mathematical and kinetic modeling of biofilm reactor based on ant colony optimization. Proc. Biochem. 45(6), 961–972 (2010)

    Article  Google Scholar 

  4. G. Mannin, D. Di Trapani, G. Viviani, H. Ødegaard, Modelling and dynamic simulation of hybrid moving bed biofilm reactors: Model concepts and application to a pilot plant. Biochem. Eng. J. 56(1–2), 23–36 (2011)

    Article  Google Scholar 

  5. Q. Wang, T.Y. Zhang, Review of mathematical models for biofilms. Sol. State Commun. 150(21), 1009–1022 (2010)

    Article  Google Scholar 

  6. D. Mary Celin Sharmila, T. Praveen, L. Rajendran, Mathematical modeling and analysis of nonlinear enzyme catalyzed reaction processes, vol. 2013, Article ID 931091, p. 7

    Google Scholar 

  7. P. Pirabaharan, R.D. Chandrakumar, G. Hariharan, An efficient wavelet based approximation method for estimating the concentration of species and effectiveness factors in porous catalysts. MATCH 73(3), 705–727 (2015)

    MathSciNet  MATH  Google Scholar 

  8. M. Sivasankari, L. Rajendran, Analytical expressions of steady-state concentrations of species in potentiometric and amperometric biosensor. Nat. Sci. 4(12), 1029–1041 (2012)

    Google Scholar 

  9. A. KazemiNasab, A. Kilieman, E. Babolian, Z.Pashazadeh Atabakan, Wavelet analysis method for solving linear and nonlinear singular boundary value problems. Appl. Math. Model. 37, 5876–5886 (2013)

    Article  MathSciNet  Google Scholar 

  10. Farikhin, I. Mohd, Orthogonal functions based on Chebyshev polynomials. Matematika 27(1), 97–107 (2011)

    MathSciNet  Google Scholar 

  11. S.G. Hosseini, A new operational matrix of derivative for Chebyshev wavelets and its applications in solving ordinary differential equations. Appl. Math. Sci. 5(51), 2537–2548 (2011)

    MathSciNet  MATH  Google Scholar 

  12. G. Hariharan, K. Kannan, Haar wavelet method for solving nonlinear parabolic equations. J. Math. Chem. 48, 1044–1061 (2010)

    Article  MathSciNet  Google Scholar 

  13. G. Hariharan, K. Kannan, K.R. Sharma, Haar wavelet in estimating the depth profile of soil temperature. Appl. Math. Comput. 210, 119–225 (2009)

    MathSciNet  MATH  Google Scholar 

  14. G. Hariharan, K. Kannan, Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009)

    MathSciNet  MATH  Google Scholar 

  15. G. Hariharan, K. Kannan, A comparative study of a haar wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)

    Article  MathSciNet  Google Scholar 

  16. G. Hariharan, K. Kannan, Review of wavelet methods for the solution of reaction diffusion problems in science and engineering. Appl. Math. Modell. (Press, 2013)

    Google Scholar 

  17. E.H. Doha, A.H. Bhrawy, S.S. Ezz Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math Appl. 62, 2364–2373 (2011)

    Article  MathSciNet  Google Scholar 

  18. E.H. Doha, A.H. Bhrawy, S.S. Ezz Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Modell. 35(2011), 5662–5672 (2011)

    Article  MathSciNet  Google Scholar 

  19. E.H. Doha, A.H. Bhrawy, M.A. Saker, Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations. Appl. Math. Lett. 24, 559–565 (2011)

    Article  MathSciNet  Google Scholar 

  20. A. Saadatmandi, M. Dehghan, A Legendre collocation method for fractional integro-differential equations. J. Vibr. Contr. 17, 2050–2058 (2011)

    Article  MathSciNet  Google Scholar 

  21. S. Esmaeili, M. Shamsi, A pseudo –spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16, 3646–3654 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hariharan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariharan, G. (2019). Wavelet-Based Analytical Expressions to Steady-State Biofilm Model Arising in Biochemical Engineering. In: Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-32-9960-3_11

Download citation

Publish with us

Policies and ethics

Navigation