Molecular Imaging for Early-Stage Disease Diagnosis

  • Chapter
  • First Online:
Visualized Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1199))

  • 454 Accesses

Abstract

With the development of cellular biology, molecular biology, and other subjects, targeted molecular probe was combined with medical imaging technologies to launch a new scientific discipline of molecular imaging that is a research discipline to visualize, characterize, and analyze biological process at the cellular and molecular levels for real-time tracking and precision therapy, also termed as the medical imaging in the twenty-first century. An array of imaging techniques has been developed to image specific targets of living cells or tissues by molecular probes, including optical molecular imaging (OI), magnetic resonance molecular imaging, ultrasound (US) molecular imaging, nuclear medicine molecular imaging, X-ray molecular imaging, and multi-mode molecular imaging. These imaging techniques make the early diagnosis of various diseases possible by means of visualization of gene expression, interactions between proteins, signal transduction, cell metabolism, cell traces, and other physiological or pathological processes in the living system, which bridge the gap between molecular biology and clinical medicine. This chapter will lay the emphasis on the early-stage diagnosis of fatal diseases, such as malignant tumors, cardio- or cerebrovascular diseases, digestive system disease, central nervous system disease, and other diseases employing molecular imaging in a real-time visualized manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AKI:

Acute kidney injury

ANGIO/LVG:

Coronary angiography/left ventriculography

bv FTD:

Behavioral variant frontotemporal dementia

CAIA:

Collagen antibody induced arthritis

CMP:

Cancer microparticle

CMR:

Cardiac magnetic resonance

CRPC:

Castrate-resistant prostate cancer

CT:

Computed tomography

CTC:

Circulating tumor cell

DLB:

Dementia with Lewy bodies

FA:

Folic acid

FDG:

2-[18F]Fluoro-2-deoxyglucose

FPR1:

Formyl peptide receptor 1

FR:

Folate receptor

FRNPs:

Fluorescence-Raman bimodal nanoparticles

FTLD:

Flexible thermocouple line detector

GBCAs:

Gadolinium-based contrast agents

GVHD:

Graft-versus-host disease

HCC:

Hepatocellular carcinoma

HER-2/Neu :

Human epidermal growth factor receptor-2

IBD:

Inflammatory bowel disease

IRI:

Ischemia-reperfusion injury

LGE:

Late gadolinium enhancement

LVH:

Left ventricular hypertrophy

MCI:

Mild cognitive impairment

MIP:

Maximum intensity projections

MRPs:

Molecular renal probes

MRR:

Magnetic resonance renography

MRU:

Magnetic resonance urography

MS:

Multiple sclerosis

MS:

Multiple sclerosis

MSOT:

Multispectral optoacoustic tomography

NAC:

Neoadjuvant chemotherapy

NIRF:

Near-infrared fluorescence

NQO1:

NAD(P)H quinone oxidoreductase 1

OI:

Optical imaging

PA:

Photoacoustic

PCA:

Posterior cortical atrophy

PCa:

Prostate cancer

PCC:

Precuneus/posterior cingulate complex

PCL:

Poly-ε-caprolactone

PHLIP:

pH low insertion peptide

RA:

Rheumatoid arthritis

RES:

Reticuloendothelial system

RGD:

Arginine-glycine-aspartic acid

SFE:

Scanning fiber endoscope

SPIO:

Superparamagnetic iron oxide

ThT:

Thioflavine T

TSPO:

Translocator protein

UC NPs:

Up-conversion nanoparticles

US:

Ultrasound

References

  1. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Tamanoi Small. 2010;6:1794–805.

    Article  CAS  PubMed  Google Scholar 

  2. Li C, **a J, Wei X, Yan H, Si Z, Ju S. pH-activated near-infrared fluorescence nanoprobe imaging tumors by sensing the acidic microenvironment. Adv Funct Mater. 2010;20:2222–30.

    Article  CAS  Google Scholar 

  3. Pal S, Ray A, Andreou C, Zhou Y, Rakshit T, Wlodarczyk M, Maeda M, Toledo-Crow R, Berisha N, Yang J, Hsu HT, Oseledchyk A, Mondal J, Zou S, Kircher MF. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nat Commun. 2019;10:1926.

    Article  PubMed  PubMed Central  Google Scholar 

  4. **ong L, Chen Z, Yu M, Li F, Liu C, Huang C. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials. 2009;30:5592.

    Article  CAS  PubMed  Google Scholar 

  5. **ong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem. 2009;81:8687.

    Article  CAS  PubMed  Google Scholar 

  6. Wang M, Mi C, Wang W, Liu C, Wu Y, Xu Z, Mao C, Xu S. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb, er upconversion nanoparticles. ACS Nano. 2009;3:1580.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng L, Yang K, Zhang S, Shao M, Lee S, Liu Z. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010;3:722.

    Article  CAS  Google Scholar 

  8. Cheng L, Wang C, Ma X, Wang Q, Cheng Y, Wang H, Li Y, Liu Z. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv Funct Mater. 2013;23:272–80.

    Article  CAS  Google Scholar 

  9. Liang Z, Artem K, Jie S, Chunying D, Jie S, Gang H. Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics. 2013;3:249–57.

    Article  Google Scholar 

  10. Min Y, Li J, Liu F, Padmanabhan P, Yeow EK, **ng B. Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials. Nanomaterials (Basel). 2014;4:129–54.

    Article  PubMed  Google Scholar 

  11. Punganuru SR, Madala HR, Arutla V, Zhang R, Srivenugopal KS. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging. Sci Rep. 2019;9:8577.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hricak H, Chen M, Coakley FV, Kinkel K, Yu KK, Sica G, Bacchetti P, Powell CB. Complex adnexal masses: detection and characterization with mr imaging—multivariate analysis. Radiology. 2000;214:39–46.

    Article  CAS  PubMed  Google Scholar 

  13. Whitten CR, DeSouza NM. Magnetic resonance imaging of uterine malignancies. Top Magn Reson Imaging. 2006;17:365–77.

    Article  PubMed  Google Scholar 

  14. Manfredi R, Gui B, Maresca G, Fanfani F, Bonomo L. Endometrial cancer: magnetic resonance imaging. Abdom Imaging. 2005;30:626.

    Article  CAS  PubMed  Google Scholar 

  15. Bean CP, Livingston JD. Superparamagnetism. J Appl Phys. 1959;30:S120–9.

    Article  Google Scholar 

  16. Hahn PF, Stark DD, Ferrucci JT. Accumulation of iron oxide particles around liver metastases during MR imaging. Gastrointest Radiol. 1992;17:173.

    Article  CAS  PubMed  Google Scholar 

  17. Moore A, Marecos E, Alexei Bogdanov J, Weissleder R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology. 2000;214:568–74.

    Article  CAS  PubMed  Google Scholar 

  18. Zimmer C, Weissleder R, Poss K, Bogdanova A, Wright SCJ, Enochs WS. MR imaging of phagocytosis in experimental gliomas. Radiology. 1995;197:533–8.

    Article  CAS  PubMed  Google Scholar 

  19. Shamsipour F, Zarnani AH, Ghods R, Chamankhah M, Forouzesh F, Vafaei S, Bayat AA, Akhondi MM, Ali Oghabian M, Jeddi-Tehrani M. Conjugation of monoclonal antibodies to super paramagnetic iron oxide nanoparticles for detection of her2/neu antigen on breast cancer cell lines. Avicenna J Med Biotechnol. 2009;1:27–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Meier R, Henning TD, Boddington S, Tavri S, Arora S, Piontek G, Rudelius M, Corot C, Daldrup-Link HE. Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiology. 2010;255:527–35.

    Article  PubMed  Google Scholar 

  21. Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, Morris E, Pisano E, Schnall M, Sener S, Smith RA, Warner E, Yaffe M, Andrews KS, Russell CA. American cancer society guidelines for breast screening with MRI as an adjunct to mammography. Cancer J Clin. 2007;57:75–89.

    Article  Google Scholar 

  22. Moon M, Cornfeld D, Weinreb J. Dynamic contrast-enhanced breast MR imaging. Clinical applications of MR diffusion and perfusion imaging. Magn Reson Imaging Clin N Am. 2009;17:351.

    Article  PubMed  Google Scholar 

  23. Ueno A, Masugi Y, Yamazaki K, Komuta M, Effendi K, Tanami Y, Tsujikawa H, Tanimoto A, Okuda S, Itano O, Kitagawa Y, Kuribayashi S, Sakamoto M. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol. 2014;61:1080.

    Article  CAS  PubMed  Google Scholar 

  24. Yoneda N, Matsui O, Ikeno H, Inoue D, Yoshida K, Kitao A, Kozaka K, Kobayashi S, Gabata T, Ikeda H, Nakamura K, Ohta T. Correlation between Gd-EOB-DTPA-enhanced MR imaging findings and OATP1B3 expression in chemotherapy-associated sinusoidal obstruction syndrome. Abdom Imaging. 2015;40:3099.

    Article  PubMed  Google Scholar 

  25. Du J, Li XY, Hu H, Xu L, Yang SP, Li FH. Preparation and imaging investigation of dual-targeted C3F8-filled PLGA nanobubbles as a novel ultrasound contrast agent for breast cancer. Sci Rep. 2018;8:3887.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev. 2011;40:149.

    Article  CAS  PubMed  Google Scholar 

  27. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36:484–92.

    CAS  PubMed  Google Scholar 

  28. Eleonora BF, Francesca P, Giovanni PM, Lorenzo L, Carlo A, Rosanna N. Evidence of 18F-FCH uptake in human T98G glioblastoma cells. Anticancer Res. 2015;35:6439–43.

    Google Scholar 

  29. Huang G, Zhao T, Wang C, Nham K, **ong Y, Gao X, Wang Y, Hao G, Ge WP, Sun X, Sumer BD, Gao J. PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64Cu-labelled polymers. Nat Biomed Eng. 2019;4:314–24.

    Article  PubMed  Google Scholar 

  30. Jakhmola A, Anton N, Anton H, Messaddeq N, Hallouard F, Klymchenko A, Mely Y, Vandamme TF. Poly-ε-caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. Biomaterials. 2014;35:2981–6.

    Article  CAS  PubMed  Google Scholar 

  31. Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77:041101.

    Article  Google Scholar 

  32. Wang LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics. 2009;3:503–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beard P. Biomedical photoacoustic imaging. J Interface Focus. 2011;1:602–31.

    Article  Google Scholar 

  34. Erpelding TN, Kim C, Pramanik M, Jankovic L, Maslov K, Guo Z, Margenthaler JA, Pashley MD, Wang LV. Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology. 2010;256:102–10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, **a Y, Wang LV. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano. 2010;4:4559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roberts S, Strome A, Choi C, Andreou C, Kossatz S, Brand C, Williams T, Bradbury M, Kircher MF, Reshetnyak YK, Grimm J, Lewis JS, Reiner T. Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Sci Rep. 2019;9:8550.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Talbot JN, Fartoux L, Balogova S, Nataf V, Kerrou K, Gutman F, Huchet V, Ancel D, Grange JD, Rosmorduc O. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med. 2010;51:1699–706.

    Article  PubMed  Google Scholar 

  38. Nicolas HK, Dugué Audrey E, Emmanuel S, Nedjla A, François L, Florence J, Nicolas A. Pairwise comparison of 18F-FDG and 18F-FCH PET/CT in prostate cancer patients with rising PSA and known or suspected second malignancy. Nucl Med Commun. 2016;37:1.

    Google Scholar 

  39. García Vicente AM, Jiménez Aragón F, Villena Martín M, Jiménez Londoño GA, Borrás Moreno JM. 18F-fluorocholine PET/CT, brain MRI, and 5-aminolevulinic acid for the assessment of tumor resection in high-grade glioma. Clin Nucl Med. 2017;42:e300-300e303.

    Article  Google Scholar 

  40. Balogova S, Huchet V, Kerrou K, Nataf V, Gutman F, Antoine M, Ruppert AM, Prignon A, Lavolée A, Montravers F, Mayaud C, Cadranel J, Talbot JN. Detection of bronchioloalveolar cancer by means of PET/CT and 18F-fluorocholine, and comparison with 18F-fluorodeoxyglucose. Nucl Med Commun. 2010;31:389–97.

    Article  CAS  PubMed  Google Scholar 

  41. Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4:365–80.

    PubMed  PubMed Central  Google Scholar 

  42. Savastano LE, Zhou Q, Smith A, Vega K, Murga-Zamalloa C, Gordon D, McHugh J, Zhao L, Wang M, Pandey A, Thompson BG, Xu J, Zhang J, Chen YE, Seibel EJ, Wang TD. Multimodal laser-based angioscopy for structural, chemical and biological imaging of atherosclerosis. Nat Biomed Eng. 2017;1:0023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michalska M, Machtoub L, Manthey HD, Bauer E, Herold V, Krohne G, Lykowsky G, Hildenbrand M, Kampf T, Jakob P, Zernecke A, Bauer WR. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1–specific nanoparticles. Arterioscler Thromb Vasc Biol. 2012;32:2350–7.

    Article  CAS  PubMed  Google Scholar 

  44. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, Semmler W, Wolf KJ. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Investig Radiol. 2000;35:460–71.

    Article  CAS  Google Scholar 

  45. Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C, Ibarrola D, Gamondès D, Corot C, Lancelot E, Raynaud J, Vives V, Laclédère C, Violas X, Douek PC, Canet-Soulas E. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252:401–9.

    Article  PubMed  Google Scholar 

  46. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.

    Article  CAS  PubMed  Google Scholar 

  47. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107:2453–8.

    Article  CAS  PubMed  Google Scholar 

  48. Amberg JR, Thompson WM, Golberger L, Williamson S, Alexander R, Bates M. Factors in the intestinal absorption of oral cholecystopaques. Investig Radiol. 1980;15:S136-141.

    Article  Google Scholar 

  49. Hu G, Liu C, Liao Y, Yang L, Huang R, Wu J, **e J, Bundhoo K, Liu Y, Bin J. Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo. Thromb Haemost. 2012;107:172–83.

    Article  CAS  PubMed  Google Scholar 

  50. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, Gertz MA, Dispenzieri A, Oh JK, Bellavia D, Tajik AJ, Grogan M. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155–64.

    Article  PubMed  Google Scholar 

  51. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, Yates D, LaMuraglia GM, Furie K, Houser S, Gewirtz H, Muller JE, Brady TJ, Fischman AJ. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.

    Article  PubMed  Google Scholar 

  52. Mc Ardle BA, Leung E, Ohira H, Cocker MS, deKemp RA, DaSilva J, Birnie D, Beanlands RS, Nery PB. The role of F18-fluorodeoxyglucose positron emission tomography in guiding diagnosis and management in patients with known or suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20:297–306.

    Article  CAS  PubMed  Google Scholar 

  53. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, Dutta P, Iwamoto Y, Ueno T, Begieneman MPV, Niessen HWM, Piek JJ, Vinegoni C, Pittet MJ, Swirski FK, Tawakol A, Di Carli M, Weissleder R, Nahrendorf M. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54:402–15.

    Article  CAS  PubMed  Google Scholar 

  55. Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, Babich JW, Udelson JE. Metabolic imaging with beta-methyl-p- [123I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation. 2005;112:2169–74.

    Article  PubMed  Google Scholar 

  56. Kida K, Akashi YJ, Yoneyama K, Shimokawa M, Musha H. 123I-BMIPP delayed scintigraphic imaging in patients with chronic heart failure. Ann Nucl Med. 2008;22:769–75.

    Article  PubMed  Google Scholar 

  57. Nakamura A, Momose M, Kondo C, Nakajima T, Kusakabe K, Hagiwara N. Ability of 201Tl and 123I-BMIPP mismatch to diagnose myocardial ischemia in patients with suspected coronary artery disease. Ann Nucl Med. 2009;23:793–8.

    Article  CAS  PubMed  Google Scholar 

  58. Nanasato M, Goto N, Isobe S, Unno K, Hirayama H, Sato T, Matsuoka S, Nagasaka T, Tominaga Y, Uchida K, Murohara T. Restored cardiac conditions and left ventricular function after parathyroidectomy in a hemodialysis patient. Parathyroidectomy improves cardiac fatty acid metabolism assessed by 123I-BMIPP. Circ J. 2009;73:1956–60.

    Article  PubMed  Google Scholar 

  59. Shi CQ, Young LH, Daher E, DiBella EV, Liu YH, Heller EN, Zoghbi S, Wackers FJ, Soufer R, Sinusas AJ. Correlation of myocardial p-123I-iodophenylpentadecanoic acid retention with 18F-FDG accumulation during experimental low-flow ischemia. J Nucl Med. 2002;43:421–31.

    PubMed  Google Scholar 

  60. Verani M, Taillefer R, Iskandrian A, Mahmarian J, He Z, Orlandi C. 123I-IPPA SPECT for the prediction of enhanced left ventricular function after coronary bypass graft surgery. J Nucl Med. 2000;41:1299–307.

    CAS  PubMed  Google Scholar 

  61. Chung YA, Hyun OJ, Kim JY, Kim KJ, Ahn KJ. Hypoperfusion and ischemia in cerebral amyloid angiopathy documented by 99mTc-ECD brain perfusion SPECT. J Nucl Med. 2009;50:1969–74.

    Article  PubMed  Google Scholar 

  62. Fidler JL, Guimaraes L, Einstein DM. MR imaging of the small bowel. Radiographics. 2009;29:1811–25.

    Article  PubMed  Google Scholar 

  63. Kawamori Y, Matsui O, Kadoya M, Yoshikawa J, Demachi H, Takashima T. Differentiation of hepatocellular carcinomas from hyperplastic nodules induced in rat liver with ferrite-enhanced MR imaging. Radiology. 1992;183:65–72.

    Article  CAS  PubMed  Google Scholar 

  64. Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. Am J Roentgenol. 1990;155:943–50.

    Article  CAS  Google Scholar 

  65. Imai Y, Murakami T, Yoshida S, Nishikawa M, Ohsawa M, Tokunaga K, Murata M, Shibata K, Zushi S, Kurokawa M, Yonezawa T, Kawata S, Takamura M, Nagano H, Sakon M, Monden M, Wakasa K, Nakamura H. Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology. 2000;32:205–12.

    Article  CAS  PubMed  Google Scholar 

  66. Araki T. SPIO-MRI in the detection of hepatocellular carcinoma. J Gastroenterol. 2000;35:874–6.

    Article  CAS  PubMed  Google Scholar 

  67. Lucidarme O, Baleston F, Cadi M, Bellin M, Charlotte F, Ratziu V, Grenier PA. Non-invasive detection of liver fibrosis: is superparamagnetic iron oxide particle-enhanced MR imaging a contributive technique. Eur Radiol. 2003;13:467–74.

    Article  PubMed  Google Scholar 

  68. Machtaler S, Knieling F, Luong R, Tian L, Willmann JK. Assessment of inflammation in an acute on chronic model of inflammatory bowel disease with ultrasound molecular imaging. Theranostics. 2015;5:1175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Janes JO, Dietschy JM, Berk RN, Loeb PM, Barnhart JL. Determinants of the rate of intestinal absorption of oral cholecystographic contrast agents in the dog jejunum. Gastroenterology. 1979;76:970–7.

    Article  CAS  PubMed  Google Scholar 

  70. Wu Y, Huang S, Wang J, Sun L, Zeng F, Wu S. Activatable probes for diagnosing and positioning liver injury and metastatic tumors by multispectral optoacoustic tomography. Nat Commun. 2018;9:3983.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Laforce R Jr, Soucy JP, Sellami L, Dallaire-Théroux C, Brunet F, Bergeron D, Miller BL, Ossenkoppele R. Molecular imaging in dementia: past, present, and future. Alzheimers Dement. 2018;14:1522–52.

    Article  PubMed  Google Scholar 

  72. **a Y, Padmanabhan P, Sarangapani S, Gulyás B, Vadakke Matham M. Bifunctional fluorescent/raman nanoprobe for the early detection of amyloid. Sci Rep. 2019;9:8497.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med. 2008;60:1218–31.

    Article  CAS  PubMed  Google Scholar 

  74. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol. 2015;14:114–24.

    Article  PubMed  Google Scholar 

  75. Kanda T, Ishii K, Uemura T, Miyamoto N, Yoshikawa T, Kono AK, Mori E. Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging. 2008;35:2227–34.

    Article  PubMed  Google Scholar 

  76. Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Förstl H, Kurz A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging. 2004;25:1051–6.

    Article  CAS  PubMed  Google Scholar 

  77. Mak E, Su L, Williams GB, O'Brien JT. Neuroimaging characteristics of dementia with Lewy bodies. Alzheimers Res Ther. 2014;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bohnen NI, Müller M, Frey KA. Molecular imaging and updated diagnostic criteria in lewy body dementias. Curr Neurol Neurosci Rep. 2017;17:73.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Mödder U, Jander S. In vivo MRI of brain inflammation in human ischaemic stroke. Brain. 2004;127:1670–7.

    Article  PubMed  Google Scholar 

  80. Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJ, Wattjes MP, van der Pol SM, Pering C, Polman CH, de Vries HE, Geurts JJ, Barkhof F. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain. 2008;131:800–7.

    Article  PubMed  Google Scholar 

  81. Enochs WS, Harsh G, Hochberg F. Weissleder: improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging. 1999;9:228–32.

    Article  CAS  PubMed  Google Scholar 

  82. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30:15–35.

    Article  CAS  PubMed  Google Scholar 

  83. Kannan S, Saadani-Makki F, Balakrishnan B, Chakraborty P, Janisse J, Lu X, Muzik O, Romero R, Chugani DC. Magnitude of [11C] PK11195 binding is related to severity of motor deficits in a rabbit model of cerebral palsy induced by intrauterine endotoxin exposure. Dev Neurosci. 2011;33:231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kang JM, Lee S, Seo S, Jeong HJ, Woo S, Lee H, Lee Y, Yeon BK, Shin DH, Park KH, Kang H, Okamura N, Furumoto S, Yanai K, Villemagne VL, Seong J, Na DL, Ido T, Cho J, Lee K, Noh Y. Tau positron emission tomography using [18F]THK5351 and cerebral glucose hypometabolism in Alzheimer's disease. Neurobiol Aging. 2017;59:210–9.

    Article  CAS  PubMed  Google Scholar 

  85. Golestani R, Razavian M, Ye Y, Zhang J, Jung JJ, Toczek J, Gona K, Kim HY, Elias JA, Lee CG, Homer RJ, Sadeghi MM. Matrix metalloproteinase-targeted imaging of lung inflammation and remodeling. J Nucl Med. 2017;58:138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Charles E, Chordia A, Sharma J, Mehaffey Y, Zhang D, Glover I, Kron D, Pan V, Laubach V. Use of a novel formyl peptide receptor ligand and noninvasive SPECT imaging to diagnose and monitor ischemia-reperfusion injury after lung transplantation. Translational Studies in Lung Transplantation: American Thoracic Society; 2017.

    Google Scholar 

  87. Jiaguo H, **gchao L, Yan L, Qingqing M, Kanyi P. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43.

    Article  Google Scholar 

  88. Bhatnagar S, Khera E, Liao J, Eniola V, Hu Y, Smith DE, Thurber GM. Oral and subcutaneous administration of a near-infrared fluorescent molecular imaging agent detects inflammation in a mouse model of rheumatoid arthritis. Sci Rep. 2019;9:4661.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Molinari F, Fink C, Risse F, Tuengerthal S, Bonomo L, Kauczor H. Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Investig Radiol. 2006;41:624–30.

    Article  Google Scholar 

  90. Ohno Y, Hatabu H, Higashino T, Takenaka D, Watanabe H, Nishimura Y, Yoshimura M, Sugimura K. Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. Am J Roentgenol. 2004;182:73–8.

    Article  Google Scholar 

  91. Iwasawa T, Saito K, Ogawa N, Ishiwa N, Kurihara H. Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J Magn Reson Imaging. 2002;15:685–92.

    Article  PubMed  Google Scholar 

  92. Schneider G, Reimer P, Mamann A, Kirchin MA, Morana G, Grazioli L. Contrast agents in abdominal imaging: current and future directions. Top Magn Reson Imaging. 2005;16:107–24.

    Article  PubMed  Google Scholar 

  93. Anzai Y, Prince MR. Iron oxide-enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imaging. 1997;7:75–81.

    Article  CAS  PubMed  Google Scholar 

  94. Pultrum BB, van der Jagt EJ, van Westreenen HL, van Dullemen HM, Kappert P, Groen H, Sietsma J, Oudkerk M, Plukker JT, van Dam GM. Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging. 2009;9:19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nguyen BC, Stanford W, Thompson BH, Rossi NP, Kernstine KH, Kern JA, Robinson RA, Amorosa JK, Mammone JF, Outwater EK. Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J Magn Reson Imaging. 1999;10:468–73.

    Article  CAS  PubMed  Google Scholar 

  96. Koh DM, Brown G, Temple L, Raja A, Toomey P, Bett N, Norman AR, Husband JE. Rectal cancer: mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings—initial observations. Radiology. 2004;231:91–9.

    Article  PubMed  Google Scholar 

  97. Harisinghani MG, Saini S, Weissleder R, Halpern EF, Schima W, Rubin DL, Stillman AE, Sica GT, Small WC, Hahn PF. Differentiation of liver hemangiomas from metastases and hepatocellular carcinoma at MR imaging enhanced with blood-pool contrast agent Code-7227. Radiology. 1997;202:687–91.

    Article  CAS  PubMed  Google Scholar 

  98. Tokuhara T, Tanigawa N, Matsuki M, Nomura E, Mabuchi H, Lee S, Tatsumi Y, Nishimura H, Yoshinaka R, Kurisu Y, Narabayashi I. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer. 2008;11:194–200.

    Article  PubMed  Google Scholar 

  99. Seneterre E, Weissleder R, Jaramillo D, Reimer P, Lee AS, Brady TJ, Wittenberg J. Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology. 1991;179:529–33.

    Article  CAS  PubMed  Google Scholar 

  100. Beata P, Anne P, Jari P, Lotta J, Karin S, Andreas H, Ann-Kristin O, Tapani R, Lisa V, Riitta L. Coordinated responses of natural anticoagulants to allogeneic stem cell transplantation and acute GVHD-A longitudinal study. PLoS One. 2017;12:e0190007.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by China Postdoctoral Science Foundation (2020T130092ZX, 2019 M651044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo Zhang .

Editor information

Editors and Affiliations

3.1 Electronic Supplementary Material

Molecular Imaging for Early-Stage Disease Diagnosis (MP4 119839 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, K., Xu, H., Li, K. (2023). Molecular Imaging for Early-Stage Disease Diagnosis. In: Liu, Z. (eds) Visualized Medicine. Advances in Experimental Medicine and Biology, vol 1199. Springer, Singapore. https://doi.org/10.1007/978-981-32-9902-3_3

Download citation

Publish with us

Policies and ethics

Navigation