Nanotechnology for Mitigation of Global Warming Impacts

  • Chapter
  • First Online:
Global Climate Change: Resilient and Smart Agriculture

Abstract

Global warming is the current challenging issue to the researchers and governments all over the world. Global mean surface temperature is projected to increase by 1.5–2 °C within 40–50 years. If this trend continues, the Earth will be unfit to live in the next century. This chapter focuses on the use of nanotechnology and nanomaterials for the reduction of global surface temperature. Nanotechnology plays multifunctional role in finding solutions to reduce global warming. There are variety of nanostructured materials explored including metal organic frameworks (MOFs), nanoporous carbonaceous materials, nano silica, nano zeolites, functionalized nanomaterials, and nanocomposites, which are discussed in detail for its efficiency in sequestration of greenhouse gases. Nanomaterials possess enormous surface area per unit volume; could be more useful in the interaction of other materials; provides a room for the storage and transport of clean energy fuels; and adsorption of greenhouse gases. Nanocomposites used in manufacturing lightweight materials for transportation reduce the usage of conventional fossil fuels and thereby reduce the global warming. Nanocatalysts store the oxygen and promote complete combustion of fuels which aids in reducing the fuel consumption as well as the generation of greenhouse gases. Nano-based lubricants and nanocoatings significantly reduce the friction and wear in the engine and cut down the consumption of fuel up to 2% and correspondingly lower the emission of carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas HF, Daud WW (2010) Hydrogen production by methane decomposition: a review. Int J Hydrog Energy 35(3):1160–1190

    Article  CAS  Google Scholar 

  • Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7(4):333

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Moral-Vico J, Markeb AA, Busquets-Fite M, Komilis D, Puntes V et al (2017) Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane. Sci Total Environ 595:51–62

    Article  CAS  PubMed  Google Scholar 

  • Anbia M, Eskandari A (2016) Effect of particle size of NaX zeolite on adsorption of CO2/CH4. Int J Eng 29(1):1–7

    Google Scholar 

  • Anderson RF, Sachs JP, Fleisher MQ, Allen KA, Yu J, Koutavas A, Jaccard SL (2019) Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob Biogeochem Cycles 33(3):301–317

    Article  CAS  Google Scholar 

  • Awang NW, Ramasamy D, Kadirgama K, Najafi G, Sidik NAC (2019) Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil. Int J Heat Mass Transf 131:1196–1204

    Article  CAS  Google Scholar 

  • Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114(19):10095–10130

    Article  CAS  PubMed  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303

    Article  CAS  PubMed  Google Scholar 

  • Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H et al (2003) Single-wall nanostructured carbon for methane storage. J Phys Chem B 107(20):4681–4684

    Article  CAS  Google Scholar 

  • Bergquist P, Warshaw C (2019) Does global warming increase public concern about climate change? J Polit 81(2):686–691

    Article  Google Scholar 

  • Bharati R, Suresh S (2017) A review on nano-catalyst from waste for production of biofuel-via-bioenergy. In: Biofuels and bioenergy (BICE2016), pp 25–32

    Google Scholar 

  • Bhushan B (ed) (2017) Springer handbook of nanotechnology. Springer, Berlin

    Google Scholar 

  • Bolaji BO, Huan Z (2013) Ozone depletion and global warming: case for the use of natural refrigerant—a review. Renew Sust Energ Rev 18:49–54

    Article  CAS  Google Scholar 

  • Bondre D, Joshi A, Shinde T, Deshmukh A, Dhanawade K (2019) Experimental performance and analysis of domestic refrigeration system using nano-refrigerants. In: Proceedings of international conference on intelligent manufacturing and automation. Springer, Singapore, pp 389–399

    Chapter  Google Scholar 

  • Botas JA, Calleja G, Sánchez-Sánchez M, Orcajo MG (2010) Cobalt do** of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26(8):5300–5303

    Article  CAS  PubMed  Google Scholar 

  • Bratsos I, Tampaxis C, Spanopoulos I, Demitri N, Charalambopoulou G, Vourloumis D et al (2018) Heterometallic In(III)-Pd(II) porous metal-organic framework with square-octahedron topology displaying high CO2 uptake and selectivity toward CH4 and N2. Inorg Chem 57(12):7244–7251

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Quan X, Li G, Gao N (2016) Anticorrosion and scale behaviors of nanostructured ZrO2-TiO2 coatings in simulated geothermal water. Ind Eng Chem Res 55(44):11480–11494

    Article  CAS  Google Scholar 

  • Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F (2015) High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem Mater 27(3):959–964

    Article  CAS  Google Scholar 

  • Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on Zeolite 13X at high pressures. J Chem Eng Data 49(4):1095–1101

    Article  CAS  Google Scholar 

  • Chen D, Wang Y, Hong M (2012) Lanthanide nanomaterials with photon management characteristics for photovoltaic application. Nano Energy 1(1):73–90

    Article  CAS  Google Scholar 

  • Chen G, Seo J, Yang C, Prasad PN (2013) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42(21):8304–8338

    Article  CAS  PubMed  Google Scholar 

  • Cheung O, Bacsik Z, Liu Q, Mace A, Hedin N (2013) Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA. Appl Energy 112:1326–1336

    Article  CAS  Google Scholar 

  • Chui SSY, Lo SMF, Charmant JP, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405):1148–1150

    Article  CAS  PubMed  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekar K, Sridaran M, Arivanandhan M, Jayavel R (2019) A facile preparation, performance and emission analysis of pongamia oil based novel biodiesel in diesel engine with CeO2: Gd nanoparticles. Fuel 255:115756

    Article  CAS  Google Scholar 

  • Diallo MS, Fromer NA, Jhon MS (2013) Nanotechnology for sustainable development: retrospective and outlook. In: Nanotechnology for sustainable development. Springer, Cham, pp 1–16

    Google Scholar 

  • Duan D, You X, Liang J, Liu S, Wang Y (2015) Carbon supported Cu-Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells. Electrochim Acta 176:1126–1135

    Article  CAS  Google Scholar 

  • Easterbrook D (ed) (2016) Evidence-based climate science: data opposing CO2 emissions as the primary source of global warming. Elsevier, San Diego, CA

    Google Scholar 

  • Edelstein AS (2001) Nanomaterials. In: Buschow KJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials. Science and technology, 1st edn. Elsevier, pp 5916–5927

    Google Scholar 

  • Eskandari A, Jahangiri M, Anbia M (2015) Effect of particle size of NaX zeolite on adsorption of CO2/CH4. Int J Eng Trans A Basics 29(1):1–7

    Google Scholar 

  • Fan J, Njuguna J (2016) An introduction to lightweight composite materials and their use in transport structures. In: Lightweight composite structures in transport. Woodhead Publishing, Sawston, pp 3–34

    Chapter  Google Scholar 

  • Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology—the US Department of Energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20

    Article  CAS  Google Scholar 

  • Finsy V, Ma L, Alaerts L, De Vos DE, Baron GV, Denayer JFM (2009) Separation of CO2/CH4 mixtures with the MIL-53(Al) metal-organic framework. Microporous Mesoporous Mater 120:221–227

    Article  CAS  Google Scholar 

  • Fomkin AA, Tsivadze AY, Aksyutin OE, Ishkov AG, Pribylov AA, Shkolin AV et al (2018) Adsorption of natural gas methane on metal-organic framework structures in the range of supercritical temperatures. Prot Metals Phys Chem Surf 54(3):347–353

    Article  CAS  Google Scholar 

  • Fujita M, Mizuta R, Ishii M, Endo H, Sato T, Okada Y, Kawazoe S, Sugimoto S, Ishihara K, Watanabe S (2019) Precipitation changes in a climate with 2-K surface warming from large ensemble simulations using 60-km global and 20-km regional atmospheric models. Geophys Res Lett 46(1):435–442

    Article  Google Scholar 

  • Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  CAS  Google Scholar 

  • Galhotra P, Navea JG, Larsen SC, Grassian VH (2009) Carbon dioxide (C16O2 and C18O2) adsorption in zeolite Y materials: effect of cation, adsorbed water and particle size. Energy Environ Sci 2(4):401–409

    Article  CAS  Google Scholar 

  • Garshasbi V, Jahangiri M, Anbia M (2018) Adsorption of carbon dioxide and methane on nanosized sodalite octahydrate zeolite. Part Sci Technol 36(6):660–665

    Article  CAS  Google Scholar 

  • Ghalei B, Sakurai K, Kinoshita Y, Wakimoto K, Isfahani AP, Song Q et al (2017) Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy 2(7):17086

    Article  CAS  Google Scholar 

  • González-Alemán JJ, Pascale S, Gutierrez-Fernandez J, Murakami H, Gaertner MA, Vecchi GA (2019) Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys Res Lett 46(3):1754–1764

    Article  Google Scholar 

  • Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49(17):3014–3017

    Article  CAS  Google Scholar 

  • Gurdal Y, Keskin S (2016) A new approach for predicting gas separation performances of MOF membranes. J Membr Sci 519:45–54

    Article  CAS  Google Scholar 

  • Haldoupis E, Watanabe T, Nair S, Sholl DS (2012) Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem 13(15):3449–3452

    Article  CAS  PubMed  Google Scholar 

  • Harvey LD (2018) Global warming. Routledge, Abingdon

    Book  Google Scholar 

  • Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1(9):695

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y (2003) Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Microporous Mesoporous Mater 58:105–114

    Article  CAS  Google Scholar 

  • Huang L, Zhang L, Shao Q, Lu L, Lu X, Jiang S, Shen W (2007) Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects. J Phys Chem C 111(32):11912–11920

    Article  CAS  Google Scholar 

  • Hussein AK (2015) Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sust Energ Rev 42:460–476

    Article  CAS  Google Scholar 

  • Hwang S, Chi WS, Lee SJ, Im SH, Kim JH, Kim J (2015) Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. J Membr Sci 480:11–19

    Article  CAS  Google Scholar 

  • IPCC (2018) Intergovernmental Panel on Climate Change special report: global warming of 1.5 °C

    Google Scholar 

  • Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Rentschler J, Sethia G, Weinman S, Perrone R, Liu K (2013) Synthesis of Ttype zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process. Chem Eng J 230:380–388

    Article  CAS  Google Scholar 

  • Kang Z, Xue M, Zhang D, Fan L, Pan Y, Qiu S (2015) Hybrid metal-organic framework nanomaterials with enhanced carbon dioxide and methane adsorption enthalpy by incorporation of carbon nanotubes. Inorg Chem Commun 58:79–83

    Article  CAS  Google Scholar 

  • Karacan CÖ, Ruiz FA, Cotè M, Phipps S (2011) Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int J Coal Geol 86(2–3):121–156

    Article  CAS  Google Scholar 

  • Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5(8):3149–3171

    Article  CAS  PubMed  Google Scholar 

  • Khan WS, Ceylan M, Asmatulu R, Asmatulu R (2012) Effects of nanotechnology on global warming. In: ASEE midwest section conference, Rollo, MO, vol 19, p 21

    Google Scholar 

  • Kim S, Kim HD, Kim H, Ahn HS, Jo H, Kim J, Kim MH (2010) Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Exp Therm Fluid Sci 34(4):487–495

    Article  CAS  Google Scholar 

  • Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Characterization of the porous structure of SBA-15. Chem Mater 12:1961–1968

    Article  CAS  Google Scholar 

  • Kulprathipanja S (ed) (2010) Zeolites in industrial separation and catalysis. John Wiley & Sons, Weinheim

    Google Scholar 

  • Kumar S, Terashima C, Fujishima A, Krishnan V, Pitchaimuthu S (2019) Photocatalytic degradation of organic pollutants in water using graphene oxide composite. In: A new generation material graphene: applications in water technology. Springer, Cham, pp 413–438

    Chapter  Google Scholar 

  • Li K, Jiang J, Yan F, Tian S, Chen X (2014) The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl Energy 136:750–755

    Article  CAS  Google Scholar 

  • Lithoxoos GP, Labropoulos A, Peristeras LD, Kanellopoulos N, Samios J, Economou IG (2010) Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study. J Supercrit Fluids 55(2):510–523

    Article  CAS  Google Scholar 

  • Liu X, Zhou L, Li J, Sun Y, Su W, Zhou Y (2006) Methane sorption on ordered mesoporous carbon in the presence of water. Carbon 44:1386–1392

    Article  CAS  Google Scholar 

  • Liu L, Nicholson D, Bhatia SK (2015) Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: a molecular simulation study. Chem Eng Sci 121:268–278

    Article  CAS  Google Scholar 

  • Lu C, Bai H, Wu B, Su F, Hwang JF (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuel 22(5):3050–3056

    Article  CAS  Google Scholar 

  • Lyu MY, Choi TG (2015) Research trends in polymer materials for use in lightweight vehicles. Int J Precis Eng Manuf 16(1):213–220

    Article  Google Scholar 

  • Ma PC, Zhang Y (2014) Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials. Renew Sust Energ Rev 30:651–660

    Article  CAS  Google Scholar 

  • McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2 (dobpdc). J Am Chem Soc 134(16):7056–7065

    Article  CAS  PubMed  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10(2):182–198

    Article  CAS  PubMed  Google Scholar 

  • Mei D, Geng L, Lin Z, Chen S, Wei J, Liao L (2018) CO2 adsorption properties of mixed-amine functionalized mesoporous molecular sieve KIT-6. Mater Res Exp 5(6):065520

    Article  CAS  Google Scholar 

  • Meng XS, Zhu G, Wang ZL (2014) Robust thin-film generator based on segmented contact-electrification for harvesting wind energy. ACS Appl Mater Interfaces 6(11):8011–8016

    Article  CAS  PubMed  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297(5590):2250–2253

    Article  CAS  PubMed  Google Scholar 

  • Meth S, Goeppert A, Prakash GS, Olah GA (2012) Silica nanoparticles as supports for regenerable CO2 sorbents. Energy Fuel 26(5):3082–3090

    Article  CAS  Google Scholar 

  • Monteiro B, Nabais A, Casimiro M, Martins A, Francisco R, Neves L, Pereira C (2018) Impact on CO2/N2 and CO2/CH4 separation performance using Cu-BTC with supported ionic liquids-based mixed matrix membranes. Membranes 8(4):93

    Article  PubMed Central  CAS  Google Scholar 

  • Montzka SA, Reimannander S, Engel A, Kruger K, Sturges WT, Blake DR et al (2011) Ozone-depleting substances (ODSs) and related chemicals, 1. In: Scientific assessment of ozone depletion: 2010, global ozone research and monitoring project—Report No. 52. World Meteorological Organization, Geneva, 516 pp

    Google Scholar 

  • Nandi S, Maity R, Chakraborty D, Ballav H, Vaidhyanathan R (2018) Preferential adsorption of CO2 in an ultramicroporous MOF with cavities lined by basic groups and open-metal sites. Inorg Chem 57(9):5267–5272

    Article  CAS  PubMed  Google Scholar 

  • Oezaslan M, Hasché F, Strasser P (2012) Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J Electrochem Soc 159(4):B394–B405

    Article  CAS  Google Scholar 

  • Osouleddini N, Rastegar SF (2019) DFT study of the CO2 and CH4 assisted adsorption on the surface of graphene. J Electron Spectrosc Relat Phenom 232:105–110

    Article  CAS  Google Scholar 

  • Park HJ, Suh MP (2013) Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chem Sci 4(2):685–690

    Article  CAS  Google Scholar 

  • Paul G, Shit S, Hirani H, Kuila T, Murmu NC (2019) Tribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricants. Tribol Int 131:605–619

    Article  CAS  Google Scholar 

  • Pena-Paras L, Maldonado-Cortés D, García P, Irigoyen M, Taha-Tijerina J, Guerra J (2017) Tribological performance of halloysite clay nanotubes as green lubricant additives. Wear 376:885–892

    Article  CAS  Google Scholar 

  • Peng X, Cao D, Wang W (2011) Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5. Chem Eng Sci 66(10):2266–2276

    Article  CAS  Google Scholar 

  • Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135(32):11887–11894

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, De Faria AF, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Lee BK, Kim J, Lee CH (2016a) Enhancement of CO2 capture by using synthesized nano-zeolite. J Taiwan Inst Chem Eng 64:220–226

    Article  CAS  Google Scholar 

  • Pham TH, Lee BK, Kim J (2016b) Novel improvement of CO2 adsorption capacity and selectivity by ethylenediamine-modified nano zeolite. J Taiwan Inst Chem Eng 66:239–248

    Article  CAS  Google Scholar 

  • Qin JS, Du DY, Li WL, Zhang JP, Li SL, Su ZM et al (2012) N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery. Chem Sci 3(6):2114–2118

    Article  CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221

    Article  CAS  Google Scholar 

  • Ruiz-Anchondo T, Flores-Holguín N, Glossman-Mitnik D (2010) Natural carotenoids as nanomaterial precursors for molecular photovoltaics: a computational DFT study. Molecules 15(7):4490–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabouni R, Kazemian H, Rohani S (2014) Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21(8):5427–5449

    Article  CAS  Google Scholar 

  • Saha D, Bao Z, Jia F, Deng S (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ Sci Technol 44:1820–1826

    Article  CAS  PubMed  Google Scholar 

  • Salehi S, Anbia M, Hosseiny AH, Sepehrian M (2018) Enhancement of CO2 adsorption on polyethylenimine functionalized multiwalled carbon nanotubes/Cd-nanozeolite composites. J Mol Struct 1173:792–800

    Article  CAS  Google Scholar 

  • Sanukrishna SS, Shafi M, Murukan M, Prakash MJ (2019) Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant. Powder Technol 356:39–49

    Article  CAS  Google Scholar 

  • Seffati K, Honarvar B, Esmaeili H, Esfandiari N (2019) Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel 235:1238–1244

    Article  CAS  Google Scholar 

  • Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13(9):2373–2384

    Article  CAS  Google Scholar 

  • Sevilla M, Valle-Vigón P, Fuertes AB (2011) N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21(14):2781–2787

    Article  CAS  Google Scholar 

  • Shen Y, Fang Q, Chen B (2014) Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ Sci Technol 49(1):67–84

    Article  PubMed  CAS  Google Scholar 

  • Sircar S (2006) Basic research needs for design of adsorptive gas separation processes. Ind Eng Chem Res 45(16):5435–5448

    Article  CAS  Google Scholar 

  • Sivasubramanian V (2016) Nanotechnology in environmental applications. In: Environmental sustainability using green technologies. CRC Press, Boca Raton, FL, pp 75–116

    Chapter  Google Scholar 

  • Song X, Shi Y, Li G, Yang R, Wang G, Zheng R, Lyu Z (2018) Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells. Appl Energ 218:325–337

    Article  Google Scholar 

  • Stiling P (2009) Greenhouse gases, global warming, and insects. In: Encyclopedia of insects. Academic Press, San Diego, CA, pp 428–431

    Chapter  Google Scholar 

  • Tauseef SM, Premalatha M, Abbasi T, Abbasi SA (2013) Methane capture from livestock manure. J Environ Manag 117:187–207

    Article  CAS  Google Scholar 

  • Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17(10):2494–2513

    Article  CAS  Google Scholar 

  • Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132:76–78

    Article  CAS  PubMed  Google Scholar 

  • Vertuccio L, Guadagno L, Spinelli G, Lamberti P, Tucci V, Russo S (2016) Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures. Compos B Eng 107:192–202

    Article  CAS  Google Scholar 

  • Vryonis O, Andritsch T, Vaughan AS, Lewin PL (2016) Improved lightning protection of carbon fiber reinforced polymer wind turbine blades: epoxy/graphene oxide nanocomposites. In: 2016 IEEE conference on electrical insulation and dielectric phenomena (CEIDP), pp 635–638

    Google Scholar 

  • Wang L, Yang RT (2011) Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density. J Phys Chem C 115(43):21264–21272

    Article  CAS  Google Scholar 

  • Wang XJ, Li PZ, Chen Y, Zhang Q, Zhang H, Chan XX et al (2013a) A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Sci Rep 3:1149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Sun H, Ang HM, Tadé MO (2013b) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347

    Article  CAS  Google Scholar 

  • Wang M, Wang Z, Li N, Liao J, Zhao S, Wang J, Wang S (2015) Relationship between polymer–filler interfaces in separation layers and gas transport properties of mixed matrix composite membranes. J Membr Sci 495:252–268

    Article  CAS  Google Scholar 

  • Wang X, Ou G, Wang N, Wu H (2016) Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl Mater Interfaces 8:9194–9199

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Simmons JM, Liu Y, Brown CM, Wang XS, Ma S et al (2010) Metal–organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chem Eur J 16(17):5205–5214

    Article  CAS  PubMed  Google Scholar 

  • **. Angew Chem Int Ed 50(2):491–494

    Article  CAS  Google Scholar 

  • **ang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y (2017) Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv Mater 29(32):1606999

    Article  CAS  Google Scholar 

  • **e Y, Wang S, Lin L et al (2013) Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7(8):7119–7125

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Meng Z, Liu Y, Guo X, Deng K, Ding L, Lu R (2019) Porous MOF-205 with multiple modifications for efficiently storing hydrogen and methane as well as separating carbon dioxide from hydrogen and methane. Int J Energy Res 43:7517–7528

    CAS  Google Scholar 

  • Yang Z, **a Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129(6):1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tilman D, Furey G, Lehman C (2019) Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat Commun 10(1):718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu JG, Yu LY, Yang H, Liu Q, Chen XH, Jiang XY et al (2015) Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci Total Environ 502:70–79

    Article  CAS  PubMed  Google Scholar 

  • Zi Y, Wang ZL (2017) Nanogenerators: an emerging technology towards nanoenergy. APL Mater 5(7):074103

    Article  CAS  Google Scholar 

  • Zohdi S, Anbia M, Salehi S (2019) Improved CO2 adsorption capacity and CO2/CH4 and CO2/N2 selectivity in novel hollow silica particles by modification with multi-walled carbon nanotubes containing amine groups. Polyhedron 166:175–185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramanian, K.S., Karthika, V., Praghadeesh, M., Lakshmanan, A. (2020). Nanotechnology for Mitigation of Global Warming Impacts. In: Venkatramanan, V., Shah, S., Prasad, R. (eds) Global Climate Change: Resilient and Smart Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9856-9_15

Download citation

Publish with us

Policies and ethics

Navigation