Semi-auxetic Laminates and Auxetic Composites

  • Chapter
  • First Online:
Auxetic Materials and Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 3241 Accesses

Abstract

This chapter begins by establishing the effect of constituents with opposite Poisson’s ratio signs on the effective moduli of composite properties. Results show that the effective Young’s modulus of continuous unidirectional fiber composites in the fiber direction and that for laminates of isotropic laminas in the in-plane direction exceeds the rule of mixture prediction, especially when the difference between Young’s moduli and Poisson’s ratios between the constituents are small and large, respectively. For laminates of isotropic laminas with opposing Poisson’s ratio signs, the effective Young’s modulus in the out-of-plane direction not only exceeds the inverse rule of mixture but also the direct rule of mixture, and this is especially so when the difference between the Young’s modulus of individual laminas is insignificant. The conditions that lead to further counter-intuitive properties whereby the in-plane laminate modulus exceeds the modulus of the stiffer phase is established, followed by an example in which the maximum point of the laminate modulus takes place when the volume fraction of the stiffer phase is lower than the volume fraction of the more compliant phase. Thereafter, investigation on laminates of isotropic laminas with alternating signs of Poisson’s ratio and alternating signs of coefficient of thermal expansion (CTE) gives results of extreme overall CTE. Finally, a review is done for investigation on conventional composites that lead to auxetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assidi M, Ganghoffer JF (2012) Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties. Compos Struct 94(8):2373–2382

    Article  Google Scholar 

  • Chirima GT, Zied KM, Ravirala N, Alderson KL, Alderson A (2009) Numerical and analytical modelling of multi-layer adhesive–film interface systems. Phys Status Solidi B 246(9):2072–2082

    Article  Google Scholar 

  • Donescu S, Chiroiu V, Munteanu L (2009) On the Young’s modulus of a auxetic composite structure. Mech Res Commun 36(3):294–301

    Article  MATH  Google Scholar 

  • Drugan WJ (2007) Elastic composite materials having a negative stiffness phase can be stable. Phys Rev Lett 98(5):055502

    Article  Google Scholar 

  • Evans KE, Donoghue JP, Alderson KL (2004) The design, matching and manufacture of auxetic carbon fibre laminates. J Compos Mater 38(2):95–106

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the elastic behavior of multiphase minerals. J Mech Phys Solids 11(2):127–140

    Article  MATH  MathSciNet  Google Scholar 

  • Herakovich CT (1984) Composite laminate with negative through-the-thickness Poisson’s ratios. J Compos Mater 18(5):447–455

    Article  Google Scholar 

  • Kocer C, McKenzie DR, Bilek MM (2009) Elastic properties of a material composed of alternating layers of negative and positive Poisson’s ratio. Mater Sci Eng A 505(1–2):111–115

    Article  Google Scholar 

  • Kochmann DM, Venturini GN (2013) Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart Mater Struct 22(8):084004

    Article  Google Scholar 

  • Lim TC (2009) Out-of-plane modulus of semi-auxetic laminates. Eur J Mech A Solids 28(4):752–756

    Article  MATH  Google Scholar 

  • Lim TC (2010) In-plane stiffness of semiauxetic laminates. ASCE J Eng Mech 136(9):1176–1180

    Article  Google Scholar 

  • Lim TC (2011) Coefficient of thermal expansion of stacked auxetic and negative thermal expansion laminates. Phys Status Solidi B 248(1):140–147

    Article  Google Scholar 

  • Lim TC (2013) Corrigendum to “Out-of-plane modulus of semi-auxetic laminates”. Eur J Mech A Solids 37(1):379–380

    Article  Google Scholar 

  • Lim TC, Acharya UR (2010) Longitudinal modulus of semi-auxetic unidirectional fiber composites. J Reinf Plast Compos 29(10):1441–1445

    Article  Google Scholar 

  • Lim TC, Acharya UR (2011) Counterintuitive modulus from semi-auxetic laminates. Phys Status Solidi B 248(1):60–65

    Article  Google Scholar 

  • Liu B, Feng X, Zhang SM (2009) The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect. Compos Sci Technol 69(13):2198–2204

    Article  Google Scholar 

  • Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58

    Article  MATH  Google Scholar 

  • Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2(3):380–404

    Article  Google Scholar 

  • Sun CT, Li S (1988) Three-dimensional effective elastic constants for thick laminates. J Compos Mater 22(7):629–639

    Article  Google Scholar 

  • Timoshenko SP (1983) History of Strength of Materials. Dover Publisher, New York  

    Google Scholar 

  • Tsai SW, Hahn HT (1980) Introduction to composite materials. Technomic, Lancaster

    Google Scholar 

  • Voigt W (1889) Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wied Ann 38:573–589

    Article  Google Scholar 

  • Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Berlin

    Google Scholar 

  • Wang YC, Lakes RS (2005) Composites with inclusions of negative bulk modulus: extreme dam** and negative Poisson’s ratio. J Compos Mater 39(18):1645–1657

    Article  Google Scholar 

  • Yeh HL, Yeh HY (2003) A dimensionless mathematical model for studying the physical parameters of composite laminates–part I. J Reinf Plast Compos 22(1):83–99

    Article  Google Scholar 

  • Yeh HL, Yeh HY, Zhang R (1999) A study of negative Poisson’s ratio in randomly oriented quasi-isotropic composite laminates. J Compos Mater 33(19):1843–1857

    Article  Google Scholar 

  • Zhang W, Evans KE (1992) A Fortran program for the design of laminates with required mechanical properties. Comput Struct 45(5–6):919–939

    MATH  Google Scholar 

  • Zhang R, Yeh HL, Yeh HY (1999) A discussion of negative Poisson’s ratio design for composites. J Reinf Plast Compos 18(17):1546–1556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lim, TC. (2015). Semi-auxetic Laminates and Auxetic Composites. In: Auxetic Materials and Structures. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-287-275-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-275-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-274-6

  • Online ISBN: 978-981-287-275-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation