Application of Multiphase Flows in Combustion

  • Reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology
  • 701 Accesses

Abstract

The reacting multiphase flows such as the synthesis of aerosols in turbulent flames and reacting spray flows involve coupled, three-way interactions between turbulence, chemistry, and particle/droplet dynamics. Lagrangian methods in large eddy simulation (LES) concept are commonly adopted for computational modelling of such flows which are relevant to a wide range of engineering applications. The Lagrangian methods track the evolution of discrete elements in the turbulent gaseous phase. Suitable closures are required to model the complex multiscale and multi-physics interactions between the continues and disperse phases. In reacting spray flows, the effect of inertia is important. In such flows, the Lagrangian methods (known also as parcel methods) can be derived from either a deterministic or stochastic points of view where the stochastic method solves the transport equation of probability density function (PDF) of the number of droplets in a Monte Carlo scheme. Different models are adopted for droplet’s dispersion, evaporation, breakup, and particle formation in reacting turbulent flows. Two-phase flow models have also been developed based on the population balance equation (PBE) that governs the evolution of the number density which is a function of particle size, shape, morphology, etc. Various approaches including the methods of moment and Monte Carlo methods have been used to solve the PBE. Key challenges in modelling such flows are closure for particle agglomeration, nucleation, and growth which are nonlinear functions of environmental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Reference

  • M.A. Chishty, M. Bolla, E.R. Hawkes, Y. Pei, S. Kook, Soot formation modelling for n-dodecane sprays using the transported PDF model. Combust. Flame 192, 101–119 (2018)

    Article  Google Scholar 

  • M. Cleary, A. Klimenko, A detailed quantitative analysis of sparse-Lagrangian filtered density function simulations in constant and variable density reacting jet flows. Phys. Fluids 23(11), 115102 (2011)

    Article  Google Scholar 

  • C. Coulaloglou, L.L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci. 32(11), 1289–1297 (1977)

    Article  Google Scholar 

  • G. D’Errico, T. Lucchini, F. Contino, M. Jangi, X.S. Bai, Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling. Combust. Theor. Model. 18(1), 65–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • J.E. Dec, A conceptual model of DL diesel combustion based on laser-sheet imaging. SAE Trans., 1319–1348 (1997)

    Google Scholar 

  • G. Di Veroli, S. Rigopoulos, Modeling of aerosol formation in a turbulent jet with the transported population balance equation-probability density function approach. Phys. Fluids 23(4), 043305 (2011)

    Article  Google Scholar 

  • J.K. Dukowicz, A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35(2), 229–253 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • G.M. Faeth, Mixing, transport and combustion in sprays. Prog. Energy Combust. Sci. 13(4), 293–345 (1987)

    Article  Google Scholar 

  • M. Frenklach, Method of moments with interpolative closure. Chem. Eng. Sci. 57(12), 2229–2239 (2002)

    Article  Google Scholar 

  • S.L. Girshick, C.P. Chiu, Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J. Chem. Phys. 93(2), 1273–1277 (1990)

    Article  Google Scholar 

  • J. Greenberg, I. Silverman, Y. Tambour, On the origins of spray sectional conservation equations. Combust. Flame 93(1–2), 90–96 (1993)

    Article  Google Scholar 

  • R. Grout, W.K. Bushe, C. Blair, Predicting the ignition delay of turbulent methane jets using conditional source-term estimation. Combust. Theor. Model. 11(6), 1009–1028 (2007)

    Article  MATH  Google Scholar 

  • K.Y. Huh, E. Lee, J. Koo, Diesel spray atomization model considering nozzle exit turbulence conditions. Atom. Sprays 8(4) (1998)

    Google Scholar 

  • A.Y. Klimenko, R.W. Bilger, Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25(6), 595–687 (1999)

    Article  Google Scholar 

  • A. Kourmatzis, A. Masri, Air-assisted atomization of liquid jets in varying levels of turbulence. J. Fluid Mech. 764, 95–132 (2015)

    Article  Google Scholar 

  • F.E. Kruis, A. Maisels, H. Fissan, Direct simulation Monte Carlo method for particle coagulation and aggregation. AICHE J. 46(9), 1735–1742 (2000)

    Article  Google Scholar 

  • J. Lasheras, C. Eastwood, C. Martınez-Bazán, J. Montanes, A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Int. J. Multiphase Flow 28(2), 247–278 (2002)

    Article  MATH  Google Scholar 

  • T.K. Lesniewski, S.K. Friedlander, Particle nucleation and growth in a free turbulent jet. Proc. R. Soc. London, Ser. A 454(1977), 2477–2504 (1998)

    Article  Google Scholar 

  • S. Li, Y. Ren, P. Biswas, S.D. Tse, Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics. Prog. Energy Combust. Sci. 55, 1–59 (2016)

    Article  Google Scholar 

  • J. Loeffler, S. Das, S.C. Garrick, Large eddy simulation of titanium dioxide nanoparticle formation and growth in turbulent jets. Aerosol Sci. Technol. 45(5), 616–628 (2011)

    Article  Google Scholar 

  • Z. Luo, S. Som, S.M. Sarathy, M. Plomer, W.J. Pitz, D.E. Longman, T. Lu, Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. Combust. Theor. Model. 18(2), 187–203 (2014)

    Article  Google Scholar 

  • K. Luo, C. Shao, M. Chai, J. Fan, Level set method for atomization and evaporation simulations. Prog. Energy Combust. Sci. 73, 65–94 (2019)

    Article  Google Scholar 

  • D.L. Marchisio, R.O. Fox, Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36(1), 43–73 (2005)

    Article  Google Scholar 

  • R. McGraw, Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27(2), 255–265 (1997)

    Article  Google Scholar 

  • R.S. Miller, J. Bellan, Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293–338 (1999)

    Article  MATH  Google Scholar 

  • J.-P. Minier, On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Prog. Energy Combust. Sci. 50, 1–62 (2015)

    Article  Google Scholar 

  • J.-P. Minier, E. Peirano, The pdf approach to turbulent polydispersed two-phase flows. Phys. Rep. 352(1–3), 1–214 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Neuber, A. Kronenburg, O. Stein, M. Cleary, MMC-LES modelling of droplet nucleation and growth in turbulent jets. Chem. Eng. Sci. 167, 204–218 (2017)

    Article  Google Scholar 

  • Y. Pei, E.R. Hawkes, S. Kook, G.M. Goldin, T. Lu, Modelling n-dodecane spray and combustion with the transported probability density function method. Combust. Flame 162(5), 2006–2019 (2015)

    Article  Google Scholar 

  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10(3), 319–339 (1984)

    Article  Google Scholar 

  • L.M. Pickett, C.L. Genzale, G. Bruneaux, L.-M. Malbec, L. Hermant, C. Christiansen, J. Schramm, Comparison of diesel spray combustion in different high-temperature, high-pressure facilities. SAE Int. J. Engines 3(2), 156–181 (2010)

    Article  Google Scholar 

  • T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (RT Edwards, Inc, 2005)

    Google Scholar 

  • S.B. Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)

    Article  Google Scholar 

  • S.E. Pratsinis, Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Colloid Interface Sci. 124(2), 416–427 (1988)

    Article  Google Scholar 

  • D. Ramkrishna, The status of population balances. Rev. Chem. Eng. 3(1), 49–95 (1985)

    Article  Google Scholar 

  • W. Ranz, W.R. Marshall, Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952)

    Google Scholar 

  • M.F.A. Razak, F. Salehi, M.A. Chishty, An analysis of turbulent mixing effects on the soot formation in high pressure n-dodecane sprays. Flow Turbul. Combust. 103(3), 605–624 (2019)

    Article  Google Scholar 

  • R. Reitz, Modeling atomization processes in high-pressure vaporizing sprays. Atomisation Spray Technol. 3(4), 309–337 (1987)

    Google Scholar 

  • S. Rigopoulos, Population balance modelling of polydispersed particles in reactive flows. Prog. Energy Combust. Sci. 36(4), 412–443 (2010)

    Article  Google Scholar 

  • F. Salehi, M. Talei, E.R. Hawkes, C.S. Yoo, T. Lucchini, G. D’Errico, S. Kook, A comparative study of conditional moment closure modelling for ignition of iso-octane and n-heptane in thermally stratified mixtures. Flow, Turbulence and Combustion 95(1), 1–28 (2015)

    Article  Google Scholar 

  • F. Salehi, M.J. Cleary, A.R. Masri, A Sensitivity Analysis for Sparse-Lagrangian MMC in Simulations of a n-dodecane Reacting Jet (SAE International, 2016)

    Google Scholar 

  • F. Salehi, M. Cleary, A. Masri, Y. Ge, A. Klimenko, Sparse-Lagrangian MMC simulations of an n-dodecane jet at engine-relevant conditions. Proc. Combust. Inst. 36(3), 3577–3585 (2017a)

    Article  Google Scholar 

  • F. Salehi, M. Cleary, A. Masri, Population balance equation for turbulent polydispersed inertial droplets and particles. J. Fluid Mech. 831, 719–742 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  • F. Salehi, M. Cleary, A. Masri, A. Kronenburg, PBE modelling of polydisperse inertial particles in a turbulent recirculating flow. Int. J. Multiphase Flow 117, 42–52 (2019)

    Article  MathSciNet  Google Scholar 

  • F. Salehi, M. Ghiji, L. Chen, Large eddy simulation of high pressure spray with the focus on injection pressure. Int. J. Heat Fluid Flow 82, 108551 (2020)

    Article  Google Scholar 

  • W.A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays (Cambridge university press, 2010)

    Google Scholar 

  • F. Sporleder, Z. Borka, J. Solsvik, H.A. Jakobsen, On the population balance equation. Rev. Chem. Eng. 28(2–3), 149–169 (2012)

    Google Scholar 

  • S. Subramaniam, Lagrangian–Eulerian methods for multiphase flows. Prog. Energy Combust. Sci. 39(2–3), 215–245 (2013)

    Article  Google Scholar 

  • F. Tanner, G. Weisser, Simulation of Liquid Jet Atomization for Fuel Sprays by Means of a Cascade Drop Breakup Model (SAE Technical Paper, 1998)

    Google Scholar 

  • A. Tricoli, N. Nasiri, H. Chen, A.S. Wallerand, M. Righettoni, Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Sol. Energy 136, 553–559 (2016)

    Article  Google Scholar 

  • T. Yao, Y. Pei, B.-J. Zhong, S. Som, T. Lu, K.H. Luo, A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations. Fuel 191, 339–349 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Salehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Salehi, F. (2023). Application of Multiphase Flows in Combustion. In: Yeoh, G.H., Joshi, J.B. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-092-6_27

Download citation

Publish with us

Policies and ethics

Navigation