Senescence and Apoptosis: ROS Contribution to Stress Tolerance or Cellular Impairment

  • Chapter
  • First Online:
Reactive Oxygen Species in Plants

Abstract

Senescence and apoptosis are crucial developmental processes that take place during plant growth and development. Senescence is a genetically controlled irreversible process that culminates into the end of functional life of senescent cells, whereas apoptosis is a type of programmed cell death. These processes occur as a part of developmental activities such as aging and/or under influence of biotic and abiotic stress like pathogenic attack and environmental insult. Senescence facilitates the remobilization of nutrients from senescent cells to other develo** parts of the plant, thereby supporting plant development. Similarly, apoptosis takes place to eliminate damaged, infected, and/or unwanted cells, thus maintaining cellular homeostasis. However, the onset of stressful events has been reported to induce senescence and apoptosis at an early stage, resulting in plant productivity loss. Perception of stressful conditions triggers the production and accumulation of reactive oxygen species (ROS) in plants via multiple pathways. The generation of ROS in plant mediate signals that promote resilience toward stress or damages biomolecules which exacerbates the process of senescence and apoptosis causing cellular impairment. Improved understanding of the functional role of ROS in senescence and apoptosis is therefore essential to recognize the fate of ROS in plants. In this chapter, an attempt has been made to summarize the functional role or contribution of ROS in context to senescence and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari MI, Chen SC (2011) Leaf senescence-an overview. Int J Recent Trends Sci Technol 1(3):110–114

    Google Scholar 

  • Ansari MI, Lee RH, Chen SCG (2005) A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123(1):1–8

    Article  CAS  Google Scholar 

  • Ansari MI, Hasan S, Jalil SU (2014) Leaf senescence and GABA shunt. Bioinformation 10(12):734

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansari MI, Jalil SU, Ansari SA, Hasanuzzaman M (2021) GABA shunt: a key-player in mitigation of ROS during stress. Plant Growth Regul 94:1–19

    Article  Google Scholar 

  • Balakireva AV, Zamyatnin AA Jr (2019) Cutting out the gaps between proteases and programmed cell death. Front Plant Sci 10:704

    Article  PubMed  PubMed Central  Google Scholar 

  • Balint-Kurti P (2019) The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol 20(8):1163–1178

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transducation in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bhattacharjee S (2019) ROS in aging and senescence. In: Reactive oxygen species in plant biology. Springer, New Delhi, pp 65–79

    Chapter  Google Scholar 

  • Biswas MS, Mano JI (2016) Reactive carbonyl species activate caspase-3-like protease to initiate programmed cell death in plants. Plant Cell Physiol 57(7):1432–1442

    PubMed  Google Scholar 

  • Childs BG, Baker DJ, Kirkland JL, Campisi J, Van Deursen JM (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15(11):1139–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat J, Vandenabeele S, Vranova EVMM, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  CAS  PubMed  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Cai G (2014) Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front Plant Sci 5:120

    PubMed  PubMed Central  Google Scholar 

  • Dias CV, Mendes JS, Dos Santos AC, Pirovani CP, da Silva Gesteira A, Micheli F, Gramacho KP, Hammerstone J, Mazzafera P, de Mattos Cascardo JC (2011) Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol Biochem 49(8):917–922

    Article  CAS  PubMed  Google Scholar 

  • Dickman M, Williams B, Li Y, de Figueiredo P, Wolpert T (2017) Reassessing apoptosis in plants. Nat Plants 3(10):773–779

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuele S, Oddo E, D’Anneo A, Notaro A, Calvaruso G, Lauricella M, Giuliano M (2018) Routes to cell death in animal and plant kingdoms: from classic apoptosis to alternative ways to die—a review. Rend Lincei Sci Fis Nat 29(2):397–409

    Article  Google Scholar 

  • Farrant J, Brandt WF, Lidsey GG (2007) An overview of the mechanisms of dessication tolerance in selected angiosperm resurrection plants. Plant Stress 1:72–84

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan S (2003) Mitotic and postmitotic senescence in plants. Sci Aging Knowledge Environ 2003(38):re7

    Article  PubMed  Google Scholar 

  • Gan S (2018) Concepts and types of senescence in plants. Methods Mol Biol 1744:3–8

    Article  CAS  PubMed  Google Scholar 

  • Gao C, **ng D, Li L, Zhang L (2008) Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta 227(4):755–767

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D (2012) Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 69(19):3175–3186

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82(6):603–622

    Article  CAS  PubMed  Google Scholar 

  • Guo Y (2013) Towards systems biological understanding of leaf senescence. Plant Mol Biol 82(6):519–528

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan S (2005) Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71:83–112

    Article  CAS  PubMed  Google Scholar 

  • Han M, Kim CY, Lee J, Lee SK, Jeon JS (2014) OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cells 37(7):532

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilario E, Cañavate ML, Lacalle J, Alonso-Alconada D, Lara-Celador I, Alvarez-Granda L, Alvarez A (2010) Cell death. A comprehensive approximation. Delayed cell death. In: Microscopy: science, technology, applications and education. Formatex Research Centre, Badajoz, pp 1025–1032

    Google Scholar 

  • Huang W, Yang X, Yao S, LwinOo T, He H, Wang A, Li C, He L (2014) Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells. Plant Physiol Biochem 82:76–84

    Article  CAS  PubMed  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4(3):393–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Jalil SU, Ansari MI (2020) Stress implications and crop productivity. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 73–86

    Google Scholar 

  • Jalil SU, Ahmad I, Ansari MI (2017) Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana. Curr Plant Biol 9:11–22

    Article  Google Scholar 

  • Jalil SU, Khan MIR, Ansari MI (2019) Role of GABA transaminase in the regulation of development and senescence in Arabidopsis thaliana. Curr Plant Biol 19:100119

    Article  Google Scholar 

  • Jan N, Khurshid I (2013) Programmed cell death or apoptosis: do animals and plants share anything in common. Biotechnol Mol Biol Rev 3(5):111–126

    Google Scholar 

  • Khan MIR, Jalil SU, Chopra P, Chhillar H, Ferrante A, Khan NA, Ansari MI (2021) Role of GABA in plant growth, development and senescence. Plant Gene 26:100283

    Article  CAS  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249(3):469–481

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant-Microbe Interact 21(5):605–612

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Kang K, Kim SH, An G, Paek NC (2019) OsWRKY5 promotes rice leaf senescence via senescence-associated NAC and abscisic acid biosynthesis pathway. Int J Mol Sci 20(18):4437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Ebel RC, Roberts PD (2011) H2O2 degradation is suppressed in kumquat leaves infected with Xanthomonas axonopodis pv. citri. Sci Hortic 130(1):241–247

    Article  CAS  Google Scholar 

  • Li Y, Liao S, Mei P, Pan Y, Zhang Y, Zheng X, **e Y, Miao Y (2021) OsWRKY93 dually functions between leaf senescence and in response to biotic stress in rice. Front Plant Sci 12:327

    Google Scholar 

  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211(4):510–518

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar MS, McCormack ME, Argueso CT, Pajerowska-Mukhtar KM (2016) Pathogen tactics to manipulate plant cell death. Curr Biol 26(13):R608–R619

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Jubany-Marí T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell Environ 24(12):1319–1327

    Article  Google Scholar 

  • Nguyen GN, Hailstones DL, Wilkes M, Sutton BG (2009) Drought-induced oxidative conditions in rice anthers leading to a programmed cell death and pollen abortion. J Agron Crop Sci 195(3):157–164

    Article  CAS  Google Scholar 

  • Ougham HJ, Morris P, Thomas H (2005) The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr Top Dev Biol 66(1):135–160

    Article  CAS  PubMed  Google Scholar 

  • Partelli FL, Batista-Santos P, Scotti-Campos P, Pais IP, Quartin VL, Vieira HD, Ramalho JC (2011) Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea spp. Environ Exp Bot 74:194–204

    Article  CAS  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585(1):231–239

    Article  CAS  PubMed  Google Scholar 

  • Qu GQ, Liu X, Zhang YL, Yao D, Ma QM, Yang MY, Zhu WH, Yu S, Luo YB (2009) Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response. Planta 229(6):1269–1279

    Article  CAS  PubMed  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Raffetto JD, Leverkus M, Park HY, Menzoian JO (2001) Synopsis on cellular senescence and apoptosis. J Vasc Surg 34(1):173–177

    Article  CAS  PubMed  Google Scholar 

  • Rasool S, Mir BA, Rehman MU, Amin I, Mir MUR, Ahmad SB (2019) Abiotic stress and plant senescence. In: Senescence signalling and control in plants. Academic Press, London, pp 15–27

    Chapter  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ (2015) Senescence-associated programmed cell death. In: Plant programmed cell death. Springer, Cham, pp 203–233

    Chapter  Google Scholar 

  • Rosenvasser S, Mayak S, Friedman H (2006) Increase in reactive oxygen species (ROS) and in senescence-associated gene transcript (SAG) levels during dark-induced senescence of Pelargonium cuttings, and the effect of gibberellic acid. Plant Sci 170:873–879

    Article  CAS  Google Scholar 

  • Rubinstein B (2000) Regulation of cell death in flower petals. In: Programmed cell death in higher plants. Kluwer Academic Publishers, Boston, pp 59–74

    Chapter  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sade N, del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E (2018) Stress-induced senescence and plant tolerance to abiotic stress. J Exp Bot 69(4):845–853

    Article  CAS  PubMed  Google Scholar 

  • Salvesen GS, Hempel A, Coll NS (2016) Protease signaling in animal and plant-regulated cell death. FEBS J 283(14):2577–2598

    Article  CAS  PubMed  Google Scholar 

  • Song C, Chen Q, Wu X, Zhang J, Huang C (2014) Heat stress induces apoptotic-like cell death in two Pleurotus species. Curr Microbiol 69(5):611–616

    Article  CAS  PubMed  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197(3):696–711

    Article  PubMed  Google Scholar 

  • Tripathi SK, Tuteja N (2007) Integrated signaling in flower senescence: an overview. Plant Signal Behav 2(6):437–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Diff 18(8):1279–1288

    Article  CAS  Google Scholar 

  • Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A (2020) Programmed cell death (PCD) control in plants: new insights from the Arabidopsis thaliana deathosome. Plant Sci 299:110603

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin BF, Bakeeva LE, Zamyatnina VA, Aleksandrushkina NI (2004) Apoptosis in plants: specific features of plant apoptotic cells and effect of various factors and agents. Int Rev Cytol 233:135–179

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013) Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol 162(3):1290–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woltering EJ (2004) Death proteases come alive. Trends Plant Sci 9(10):469–472

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Masclaux-Daubresse C, Lim PO (2018) Plant senescence: how plants know when and how to die. J Exp Bot 69(4):715–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Kim HJ, Lim PO, Nam HG (2019) Leaf senescence: systems and dynamics aspects. Annu Rev Plant Biol 70:347–376

    Article  CAS  PubMed  Google Scholar 

  • Yanık F, ÇetinbaÅŸ-Genç A, Vardar F (2020) Abiotic stress–induced programmed cell death in plants. In: Plant life under changing environment. Academic Press, London, pp 1–24

    Google Scholar 

  • Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002) Mitochondrial oxidative burst involved in apoptotic response in oats. Plant J 30(5):567–579

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Nishimura Y, Fukumoto Y, Li J (2011) Effect of high temperature on active oxygen species, senescence and photosynthetic properties in cucumber leaves. Environ Exp Bot 70(2–3):212–216

    Article  CAS  Google Scholar 

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29(6):1049–1060

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachdev, S., Ansari, S.A., Ansari, M.I. (2023). Senescence and Apoptosis: ROS Contribution to Stress Tolerance or Cellular Impairment. In: Reactive Oxygen Species in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-19-9884-3_4

Download citation

Publish with us

Policies and ethics

Navigation