Application of Magnetic Nanoparticles in Cancer: Drug Delivery and Therapy

  • Chapter
  • First Online:
Targeted Cancer Therapy in Biomedical Engineering

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 548 Accesses

Abstract

Recent years have presented a marked progress in terms of cancer treatment and oncology. In general, nanoparticles have been extensively used in a number of applications, but magnetic behaviors of MNPs make them most promising and contrasting agent to be used as a contrasting agent in magnetic resonance imaging and other hypothermia technologies. Their properties are fully exploited when they are used as an active agent in targeted drug delivery to desired location by applying magnetic field from external side. Earlier diagnosis can be made by magnetic resonance imaging or combination of individual treatment with MRI in order to achieve specific definition and appropriate treatment regimen. The present chapter is focused on the magnetic nanoparticles and their use in targeted drug delivery via active or passive mechanism and, lastly, the therapeutic advantages during treatment. And lastly, the challenges and future prospective in nanotechnology field are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Indira, P. Lakshmi, Magnetic nanoparticles—a review. Int. J. Pharmaceutical Sci. Nanotechnol. 3(3), 1035–1042 (2010)

    Google Scholar 

  2. V.I. Shubayev, T.R. Pisanic II., S. **, Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61(6), 467–477 (2009)

    Article  Google Scholar 

  3. R. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200(1–3), 359–372 (1999)

    Article  Google Scholar 

  4. S.P. Gubin, Magnetic Nanoparticles (Wiley, 2009)

    Google Scholar 

  5. I. Šafařík, M. Šafaříková, Magnetic Nanoparticles and Biosciences, nanostructured materials (2002), pp. 1–23

    Google Scholar 

  6. Q.A. Pankhurst et al., Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36(13), R167 (2003)

    Article  Google Scholar 

  7. S.P. Gubin et al., Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74(6), 489 (2005)

    Article  Google Scholar 

  8. A.H. Lu, E.e.L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, vol. 46, No. 8 (2007), pp. 1222–1244

    Google Scholar 

  9. C. Lee, H. Lee, R. Westervelt, Microelectromagnets for the control of magnetic nanoparticles. Appl. Phys. Lett. 79(20), 3308–3310 (2001)

    Article  Google Scholar 

  10. C.C. Berry, A.S. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36(13), R198 (2003)

    Article  Google Scholar 

  11. E. Duguet, et al., Magnetic Nanoparticles and their Applications in Medicin (2006)

    Google Scholar 

  12. P. Tartaj et al., The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36(13), R182 (2003)

    Article  Google Scholar 

  13. T. Hyeon, Chemical synthesis of magnetic nanoparticles. Chem. Commun. 8, 927–934 (2003)

    Article  Google Scholar 

  14. J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67(1), 55–60 (2006)

    Article  Google Scholar 

  15. C. Rümenapp, B. Gleich, A. Haase, Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm. Res. 29(5), 1165–1179 (2012)

    Article  Google Scholar 

  16. P. Tartaj et al., Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater. 290, 28–34 (2005)

    Article  Google Scholar 

  17. I.J. Bruce, T. Sen, Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21(15), 7029–7035 (2005)

    Article  Google Scholar 

  18. M. Arruebo et al., Magnetic nanoparticles for drug delivery. Nano Today 2(3), 22–32 (2007)

    Article  Google Scholar 

  19. A. Roca et al., Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 42(22), 224002 (2009)

    Article  Google Scholar 

  20. J.S. Beveridge, J.R. Stephens, M.E. Williams, The use of magnetic nanoparticles in analytical chemistry. Annu. Rev. Anal. Chem. 4, 251–273 (2011)

    Article  Google Scholar 

  21. A. Ito et al., Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100(1), 1–11 (2005)

    Article  MathSciNet  Google Scholar 

  22. L.L. Vatta, R.D. Sanderson, K.R. Koch, Magnetic nanoparticles: Properties and potential applications. Pure Appl. Chem. 78(9), 1793–1801 (2006)

    Article  Google Scholar 

  23. N. Tran, T.J. Webster, Magnetic nanoparticles: biomedical applications and challenges. J. Mater. Chem. 20(40), 8760–8767 (2010)

    Article  Google Scholar 

  24. X. Batlle et al., Magnetic nanoparticles with bulklike properties. J. Appl. Phys. 109(7), 07B524 (2011)

    Article  Google Scholar 

  25. N.T. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications (2012)

    Google Scholar 

  26. S. Quazi, et al., Discovery of potential drug-like compounds against Viral protein (VP40) of Marburg Virus using pharmacophoric based virtual screening from ZINC database. BioRxiv (2021)

    Google Scholar 

  27. H. Shao et al., Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics 2(1), 55 (2012)

    Article  Google Scholar 

  28. J. Dobson, Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3(3), 139–143 (2008)

    Article  MathSciNet  Google Scholar 

  29. M.F. Hansen, S. Mørup, Models for the dynamics of interacting magnetic nanoparticles. J. Magn. Magn. Mater. 184(3), L262-274 (1998)

    Article  Google Scholar 

  30. T. Sadhukha et al., Effective elimination of cancer stem cells by magnetic hyperthermia. Mol. Pharm. 10(4), 1432–1441 (2013)

    Article  Google Scholar 

  31. D. Ortega, Q.A. Pankhurst, Magnetic hyperthermia. Nanoscience 1(60), e88 (2013)

    Google Scholar 

  32. R.B. Weiss, The anthracyclines: will we ever find a better doxorubicin? in Seminars in Oncology (1992)

    Google Scholar 

  33. S. Quazi, et al., Artificial intelligence and machine learning in medicinal chemistry and validation of emerging drug targets, in Advancements in Controlled Drug Delivery Systems (2022), pp. 27–43

    Google Scholar 

  34. C. Carvalho et al., Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem. 16(25), 3267–3285 (2009)

    Article  Google Scholar 

  35. K. Chatterjee et al., Doxorubicin cardiomyopathy. Cardiology 115(2), 155–162 (2010)

    Article  Google Scholar 

  36. K. Johnson-Arbor, R. Dubey, Doxorubicin (2017)

    Google Scholar 

  37. C.F. Thorn et al., Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genom. 21(7), 440 (2011)

    Article  Google Scholar 

  38. G. Hortobagyi, Anthracyclines in the treatment of cancer. Drugs 54(4), 1–7 (1997)

    Google Scholar 

  39. P. Speth, Q. Van Hoesel, C. Haanen, Clinical pharmacokinetics of doxorubicin. Clin. Pharmacokinet. 15(1), 15–31 (1988)

    Article  Google Scholar 

  40. P.K. Singal, N. Iliskovic, Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 339(13), 900–905 (1998)

    Article  Google Scholar 

  41. P.J. Loehrer, L.H. Einhorn, Cisplatin. Annals Internal Med. 100(5), 704–713 (1984)

    Google Scholar 

  42. E.E. Trimmer, J.M. Essigmann, Cisplatin. Essays Biochem. 34, 191–211 (1999)

    Google Scholar 

  43. M. Kartalou, J.M. Essigmann, Mechanisms of resistance to cisplatin. Mutation Res. Fundamental Mol. Mech. Mutagen. 478(1–2), 23–43 (2001)

    Article  Google Scholar 

  44. R.A. Alderden, M.D. Hall, T.W. Hambley, The discovery and development of cisplatin. J. Chem. Educ. 83(5), 728 (2006)

    Article  Google Scholar 

  45. A.W. Prestayko et al., Cisplatin (cis-diamminedichloroplatinum II). Cancer Treat. Rev. 6(1), 17–39 (1979)

    Article  Google Scholar 

  46. V. Cepeda, et al., Biochemical mechanisms of cisplatin cytotoxicity. Anti-Cancer Agents Med. Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 7(1), 3–18 (2007)

    Google Scholar 

  47. R.B. Weiss, M.C. Christian, New cisplatin analogues in development. Drugs 46(3), 360–377 (1993)

    Article  Google Scholar 

  48. I. Arany, R.L. Safirstein. Cisplatin nephrotoxicity, in Seminars in Nephrology (Elsevier, 2003)

    Google Scholar 

  49. S. Dasari, P.B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014)

    Article  Google Scholar 

  50. D.S. Goodsell, The molecular perspective: cisplatin. Stem Cells 24(3), 514–515 (2006)

    Article  Google Scholar 

  51. C.M. Kearns, L. Gianni, M.J. Egorin, Paclitaxel pharmacokinetics and pharmacodynamics, in Seminars in Oncology (1995)

    Google Scholar 

  52. S. Horwitz, Taxol (paclitaxel): mechanisms of action. Annals Oncol. Offic. J. Eur. Soc. Med. Oncol. 5, S3-6 (1994)

    Google Scholar 

  53. R.T. Liggins, W. Hunter, H.M. Burt, Solid-state characterization of paclitaxel. J. Pharm. Sci. 86(12), 1458–1463 (1997)

    Article  Google Scholar 

  54. E. Rowinsky, et al. Clinical toxicities encountered with paclitaxel (Taxol), in Seminars in Oncology (1993)

    Google Scholar 

  55. M.V. Blagosklonny, T. Fojo, Molecular effects of paclitaxel: myths and reality (a critical review). Int. J. Cancer 83(2), 151–156 (1999)

    Article  Google Scholar 

  56. W.J. Gradishar et al., Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J. Clin. Oncol. 23(31), 7794–7803 (2005)

    Article  Google Scholar 

  57. T.E. Stinchcombe, Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL®-free formulation of paclitaxel (2007)

    Google Scholar 

  58. M.C. Green et al., Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J. Clin. Oncol. 23(25), 5983–5992 (2005)

    Article  Google Scholar 

  59. S. Quazi, et al., In-silico structural and molecular docking-based drug discovery against viral protein (VP35) of Marburg virus: a potent agent of MAVD. bioRxiv (2021)

    Google Scholar 

  60. M. Markman, T.M. Mekhail, Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 3(6), 755–766 (2002)

    Article  Google Scholar 

  61. D.A. Yardley, nab-Paclitaxel mechanisms of action and delivery. J. Control. Release 170(3), 365–372 (2013)

    Article  Google Scholar 

  62. J.E. Cortes, R. Pazdur, Docetaxel. J. Clin. Oncol. 13(10), 2643–2655 (1995)

    Article  Google Scholar 

  63. K.A. Lyseng-Williamson, C. Fenton, Docetaxel. Drugs 65(17), 2513–2531 (2005)

    Article  Google Scholar 

  64. S.J. Clarke, L.P. Rivory, Clinical pharmacokinetics of docetaxel. Clin. Pharmacokinet. 36(2), 99–114 (1999)

    Article  Google Scholar 

  65. J. Baker et al., Docetaxel-related side effects and their management. Eur. J. Oncol. Nurs. 13(1), 49–59 (2009)

    Article  Google Scholar 

  66. K. Gelmon, The taxoids: paclitaxel and docetaxel. The Lancet 344(8932), 1267–1272 (1994)

    Article  Google Scholar 

  67. A.M. Comer, K.L. Goa, Docetaxel. Drugs Aging 17(1), 53–80 (2000)

    Article  Google Scholar 

  68. Q. Tan et al., Current development in nanoformulations of docetaxel. Expert Opin. Drug Deliv. 9(8), 975–990 (2012)

    Article  Google Scholar 

  69. S. Quazi, The potential implementation of biosensors for the diagnosis of biomarkers of various cancer (2022)

    Google Scholar 

  70. F.K. Engels, R.A. Mathot, J. Verweij, Alternative drug formulations of docetaxel: a review. Anticancer Drugs 18(2), 95–103 (2007)

    Article  Google Scholar 

  71. J. Verweij, M. Clavel, B. Chevalier, Paclitaxel (TaxolTM) and docetaxel (TaxotereTM): not simply two of a kind. Ann. Oncol. 5(6), 495–505 (1994)

    Article  Google Scholar 

  72. K.J. Pienta, Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer, in Seminars in Oncology (Elsevier, 2001)

    Google Scholar 

  73. M. Tampellini et al., Docetaxel chronopharmacology in mice. Can. Res. 58(17), 3896–3904 (1998)

    Google Scholar 

  74. D. Schrijvers et al., Co** with toxicities of docetaxel (TaxotereTM). Ann. Oncol. 4(7), 610–611 (1993)

    Article  Google Scholar 

  75. P.J. Dilda, P.J. Hogg, Arsenical-based cancer drugs. Cancer Treat. Rev. 33(6), 542–564 (2007)

    Article  Google Scholar 

  76. T.M. Suter, M.S. Ewer, Cancer drugs and the heart: importance and management. Eur. Heart J. 34(15), 1102–1111 (2013)

    Article  Google Scholar 

  77. G. Jaouen, A. Vessières, S. Top, Ferrocifen type anti cancer drugs. Chem. Soc. Rev. 44(24), 8802–8817 (2015)

    Article  Google Scholar 

  78. A.Z. Wang, R. Langer, O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012)

    Article  Google Scholar 

  79. N. Fauzee, Z. Dong, Y.L. Wang, Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev 12(4), 837–851 (2011)

    Google Scholar 

  80. T.W. Hambley, The influence of structure on the activity and toxicity of Pt anti-cancer drugs. Coord. Chem. Rev. 166, 181–223 (1997)

    Article  Google Scholar 

  81. S. Quazi, TNFR2 antagonist and agonist: a potential therapeutics in cancer immunotherapy (2021)

    Google Scholar 

  82. J.M. Reichert, E. Dhimolea, The future of antibodies as cancer drugs. Drug Discov. Today 17(17–18), 954–963 (2012)

    Article  Google Scholar 

  83. W. Denny, DNA-intercalating ligands as anti-cancer drugs: prospects for future design. Anticancer Drug Des. 4(4), 241–263 (1989)

    Google Scholar 

  84. W. Cui et al., Discovering anti-cancer drugs via computational methods. Front. Pharmacol. 11, 733 (2020)

    Article  Google Scholar 

  85. P.B. Bach, Indication-specific pricing for cancer drugs. JAMA 312(16), 1629–1630 (2014)

    Article  Google Scholar 

  86. H.M. Kantarjian et al., Cancer drugs in the United States: Justum Pretium—the just price. J. Clin. Oncol. 31(28), 3600 (2013)

    Article  Google Scholar 

  87. I. Ott, R. Gust, Non platinum metal complexes as anti-cancer drugs. Archiv der Pharmazie Int. J. Pharmaceutical Med. Chem. 340(3), 117–126 (2007)

    Article  Google Scholar 

  88. P.A. Marks et al., Histone deacetylase inhibitors as new cancer drugs. Curr. Opin. Oncol. 13(6), 477–483 (2001)

    Article  Google Scholar 

  89. S. Quazi, Telomerase gene therapy: a remission toward cancer. Med. Oncol. 39(6), 1–20 (2022)

    Article  Google Scholar 

  90. R.-D. Hofheinz et al., Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 16(7), 691–707 (2005)

    Article  Google Scholar 

  91. H. Kantarjian, S.V. Rajkumar, Why are cancer drugs so expensive in the United States, and what are the solutions? in Mayo Clinic Proceedings (Elsevier, 2015)

    Google Scholar 

  92. Z. Liu et al., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008)

    Article  Google Scholar 

  93. Q. Sun et al., Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater. 26(45), 7615–7621 (2014)

    Article  Google Scholar 

  94. K.N. Sugahara, et al., Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981), 1031–1035 (2010)

    Google Scholar 

  95. J. Neuzil et al., Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion 13(3), 199–208 (2013)

    Article  Google Scholar 

  96. A. Lin, et al., Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11(509), eaaw8412 (2019)

    Google Scholar 

  97. K.M. Foley, The treatment of cancer pain. N. Engl. J. Med. 313(2), 84–95 (1985)

    Article  Google Scholar 

  98. S. Quazi, Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 39(8), 1–18 (2022)

    Article  Google Scholar 

  99. V. Vilas-Boas, F. Carvalho, B. Espiña, Magnetic hyperthermia for cancer treatment: main parameters affecting the outcome of in vitro and in vivo studies. Molecules 25(12), 2874 (2020)

    Article  Google Scholar 

  100. H. Gavilán et al., Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and develo** combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50(20), 11614–11667 (2021)

    Article  Google Scholar 

  101. S. Kossatz et al., Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 17(1), 1–17 (2015)

    Article  Google Scholar 

  102. A. Rajan, N.K. Sahu, Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res. 22(11), 1–25 (2020)

    Article  Google Scholar 

  103. J. Jose et al., Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ. Sci. Pollut. Res. 27(16), 19214–19225 (2020)

    Article  Google Scholar 

  104. J. Pan et al., Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano 14(1), 1033–1044 (2020)

    Article  Google Scholar 

  105. M. Moros et al., Triggering antitumoural drug release and gene expression by magnetic hyperthermia. Adv. Drug Deliv. Rev. 138, 326–343 (2019)

    Article  Google Scholar 

  106. S. Quazi, An overview of CAR T cell mediated B cell maturation antigen therapy. Clin. Lymphoma Myeloma Leuk. 22(6), e392–e404 (2022)

    Article  Google Scholar 

  107. L. Kafrouni, O. Savadogo, Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog. Biomater. 5(3), 147–160 (2016)

    Article  Google Scholar 

  108. A. Espinosa et al., Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10(2), 2436–2446 (2016)

    Article  Google Scholar 

  109. S. Quazi, Application of Biosensors in Cancers, An Overview (2022)

    Google Scholar 

  110. A.C. Doughty et al., Nanomaterial applications in photothermal therapy for cancer. Materials 12(5), 779 (2019)

    Article  Google Scholar 

  111. R. Ahmad et al., Advanced gold nanomaterials for photothermal therapy of cancer. J. Nanosci. Nanotechnol. 16(1), 67–80 (2016)

    Article  Google Scholar 

  112. K. Yang et al., In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 24(41), 5586–5592 (2012)

    Article  Google Scholar 

  113. S. Quazi, Elucidation of CRISPR-Cas9 application in novel cellular immunotherapy. Molecular Biol. Rep. 1–9 (2022)

    Google Scholar 

  114. A.K. Rengan et al., In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett. 15(2), 842–848 (2015)

    Article  Google Scholar 

  115. L. Cheng et al., Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6(6), 5605–5613 (2012)

    Article  Google Scholar 

  116. S. Quazi, Anti-cancer activity of human gastrointestinal bacteria (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Quazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quazi, S., Tiwari, A., Akhtar, N., Menghal, R. (2023). Application of Magnetic Nanoparticles in Cancer: Drug Delivery and Therapy. In: Malviya, R., Sundram, S. (eds) Targeted Cancer Therapy in Biomedical Engineering. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9786-0_20

Download citation

Publish with us

Policies and ethics

Navigation