The Frame-Guided Assembly of Nucleic Acids

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids
  • 806 Accesses

Abstract

During last decades, many strategies have been developed and made fast progress in morphology control of amphiphilic assemblies. However, it is still necessary to develop novel strategies to prepare customized assemblies, especially in drug delivery systems. Frame-guided assembly (FGA) is a recently developed strategy to construct assemblies with programmed geometries and dimensions under identical surrounding conditions, which is inspired by the cytoskeletal-membrane protein-lipid bilayer structures. To direct the nondirectional amphiphilic assembly, some leading hydrophobic groups (LHGs) must be introduced onto a frame with designed morphology. The LHGs should be distributed in a discontinuous manner along the frame and outline the fringe of the designed structures, which will further guide the assembly of the amphiphiles to fill in the gaps between LHGs. Therefore, the shape and size of the assemblies would accord with the frame. Since the FGA has been developed in 2014, different frames have been applied to guide the multiple types of amphiphiles, among which, DNA nanostructures have been demonstrated with excellent addressability and programmability to prepare FGA vesicles. Herein, we have provided a comprehensive introduction of the development of FGA. Both inorganic frames and DNA nanostructure frames have been discussed. Furthermore, the development of the DNA nanotechnology has also been introduced in detail, which potentially benefits the understanding of the FGA with the outer and planner frames. It can be expected that the frame-guided assembly strategy will enable understanding the mechanism of self-assembly and provide a clue to understand the fundamental mechanism of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 802.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,160.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–U75

    Article  CAS  PubMed  Google Scholar 

  • Bennett V, Davis J, Fowler WE (1982) Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature 299:126–131

    Article  CAS  PubMed  Google Scholar 

  • Benson E, Mohammed A, Gardell J et al (2015) DNA rendering of polyhedral meshes at the nanoscale. Nature 523:441–U139

    Article  CAS  PubMed  Google Scholar 

  • Berger N, Sachse A, Bender J et al (2001) Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J App Pharm 223:55–68

    Article  CAS  Google Scholar 

  • Bian B, Zhang YY, Dong YC et al (2018) The investigation of the stability of DNA-b-PPO vesicles formed through frame guided assembly. Sci China Chem 61:1568–1571

    Article  CAS  Google Scholar 

  • Bian X, Zhang Z, **ong QC et al (2019) A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat Chem Biol 15:830–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretscher MS, Raff MC (1975) Mammalian plasma membranes. Nature 258:43–49

    Article  CAS  PubMed  Google Scholar 

  • Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lenhert S, Hirtz M et al (2007) Langmuir-Blodgett patterning: a bottom-up way to build mesostructures over large areas. Acc Chem Res 40:393–401

    Article  CAS  PubMed  Google Scholar 

  • Chidchob P, Edwardson TGW, Serpell CJ et al (2016) Synergy of two assembly languages in DNA nanostructures: self-assembly of sequence-defined polymers on DNA cages. J Am Chem Soc 138:4416–4425

    Article  CAS  PubMed  Google Scholar 

  • Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Liu D (2015) Frame-guided assembly of amphiphiles. Chem Eur J 21:18018–18023

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Sun Y, Wang L et al (2014) Frame-guided assembly of vesicles with programmed geometry and dimensions. Angew Chem Int Ed 53:2607–2610

    Article  CAS  Google Scholar 

  • Dong Y, Yang Z, Liu D (2015) Using small molecules to prepare vesicles with designable shapes and sizes via frame-guided assembly strategy. Small 11:3768–3771

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Yang YR, Zhang Y et al (2017) Cuboid vesicles formed by frame-guided assembly on DNA origami scaffolds. Angew Chem Int Ed 56:1586–1589

    Article  CAS  Google Scholar 

  • Dong Y, Chen S, Zhang S et al (2018) Folding DNA into a lipid-conjugated nanobarrel for controlled reconstitution of membrane proteins. Angew Chem Int Ed 57:2072–2076

    Article  CAS  Google Scholar 

  • Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliver Rev 63:136–151

    Article  CAS  Google Scholar 

  • Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32:3211–3220

    Article  CAS  PubMed  Google Scholar 

  • Grome MW, Zhang Z, Pincet F et al (2018) Vesicle tubulation with self-assembling DNA nanosprings. Angew Chem Int Ed 57:5330–5334

    Article  CAS  Google Scholar 

  • Gu HZ, Chao J, **ao SJ et al (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–U286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Pal S, Liu Y et al (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5:712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Pal S, Nangreave J et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    Article  CAS  PubMed  Google Scholar 

  • Han D, Qi X, Myhrvold C et al (2017) Single-stranded DNA and RNA origami. Science 358

    Google Scholar 

  • He Y, Ye T, Su M et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–U141

    Article  CAS  PubMed  Google Scholar 

  • Iric K, Subramanian M, Oertel J et al (2018) DNA-encircled lipid bilayers. Nanoscale 10:18463–18467

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  • Jun H, Wang X, BrickerW P et al (2019) Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nat Commun 10

    Google Scholar 

  • Ke Y, Douglas SM, Liu M et al (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131:15903–15908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke Y, Ong LL, Shih WM et al (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • LaBean TH, Yan H, Kopatsch J et al (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122:1848–1860

    Article  CAS  Google Scholar 

  • Li W, Zhang Y, Wang Y et al (2021) Nucleic acids induced peptide-based AIE nanoparticles for fast cell imaging. Chin Chem Let 32:1571–1574

    Article  CAS  Google Scholar 

  • Liu X, Zhong X, Li C (2021) Challenges in cell membrane-camouflaged drug delivery systems: development strategies and future prospects. Chin Chem Lett 32:2347–2358

    Article  CAS  Google Scholar 

  • Ong LL, Hanikel N, Yaghi OK, Grun C, Strauss MT, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang PF et al (2017) Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552:72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrault SD, Shih WM (2014) Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8:5132–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao J, Zhao C, Dong Y (2022) DNA nanostructure-assisted nanodiscs provide a toolbox to investigate membrane proteins. Cell Rep Phys Sci 3:100897

    Article  CAS  Google Scholar 

  • Praetorius F, Kick B, Behler KL et al (2017) Biotechnological mass production of DNA origami. Nature 552:84–87

    Article  CAS  PubMed  Google Scholar 

  • Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  CAS  PubMed  Google Scholar 

  • Seeman NC, Sleiman HF (2017) DNA Nanotechnol Nat Rev Mater 3:17068

    Article  Google Scholar 

  • Serpell CJ, Edwardson TGW, Chidchob P et al (2014) Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space. J Am Chem Soc 136:15767–15774

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Jia H, Chen H, Wang X et al (2019) Concentration insensitive supramolecular polymerization enabled by kinetically interlocking multiple-units strategy. CCS Chem 1:296–303

    CAS  Google Scholar 

  • Shih MM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    Article  CAS  PubMed  Google Scholar 

  • Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200:1012–1018

    Article  CAS  PubMed  Google Scholar 

  • Thomas BN, Safinya CR, Plano RJ et al (1995) Lipid tubule self-assembly: length dependence on cooling rate through a first-order phase transition. Science 267:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Tikhomirov G, Petersen P, Qian L (2017) Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552:67–71

    Article  CAS  PubMed  Google Scholar 

  • Tong WJ, Song XX, Gao CY (2012) Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 41:6103–6124

    Article  CAS  PubMed  Google Scholar 

  • Veneziano R, Ratanalert S, Zhang KM et al (2016) DNA nanotechnology designer nanoscale DNA assemblies programmed from the top down. Science 352

    Google Scholar 

  • Wagenbauer KF, Sigl C, Dietz H (2017) Gigadalton-scale shape-programmable DNA assemblies. Nature 552:78–83

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng Y, Yang Z et al (2012) Reversibly controlled morphology transformation of an amphiphilic DNA-dendron hybrid. Chem Commun 48:3715–3717

    Article  CAS  Google Scholar 

  • Wang S, Zhang Y, Dong Y et al (2019) Redox triggered disassembly of frame-guided assemblies. Polymer 175:146–151

    Article  CAS  Google Scholar 

  • Wang C, Piao J, Li Y et al (2020a) Construction of liposomes mimicking cell membrane structure through frame-guided assembly. Angew Chem Int Ed 59:15176–15180

    Article  CAS  Google Scholar 

  • Wang C, Zhang Y, Shao Y et al (2020b) pH-responsive frame-guided assembly with hydrophobicity controllable peptide as leading hydrophobic groups. Giant 1:100006

    Article  Google Scholar 

  • Wei B, Dai MJ, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Song Y, Zhao Z et al (2015) Preparation and self-assembly of supramolecular coil-rod-coil triblock copolymer PPO-dsDNA-PPO. Macromolecules 48:7550–7556

    Article  CAS  Google Scholar 

  • Xu WM, Nathwani B, Lin CX et al (2016) A programmable DNA origami platform to organize SNAREs for membrane fusion. J Am Chem Soc 138:4439–4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Park SH, Finkelstein G et al (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Han D, Nangreave J et al (2012) DNA origami with double-stranded DNA as a unified scaffold. ACS Nano 6:8209–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang J, Shigematsu H et al (2016) Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat Chem 8:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin D, Zhang M, Chen J et al (2021) Shear-responsive peptide/siRNA complexes as lung-targeting gene vectors. Chin Chem Lett 32:1731–1736

    Article  CAS  Google Scholar 

  • Yu W, Shevtsov M, Chen X et al (2020) Advances in aggregatable nanoparticles for tumor-targeted drug delivery. Chin Chem Lett 31:1366–1374

    Article  CAS  Google Scholar 

  • Yuan W, Piao J, Dong Y (2021) Advancements in the preparation methods of artificial cell membranes with lipids. Mater Chem Front 5:5257–5297

    Article  Google Scholar 

  • Zhang Z, Yang Y, Pincet F et al (2017) Placing and sha** liposomes with reconfigurable DNA nanocages. Nat Chem 9:653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bao D, Wang S et al (2018) A modularly designable vesicle for sequentially multiple loading. Small 14:1703259

    Article  Google Scholar 

  • Zhang Y, Hou X, Piao J et al (2022) Delivery and controllable release of anti-sense DNA based on frame-guided assembly strategy. Eur Polym J 173:111187

    Article  CAS  Google Scholar 

  • Zhao Z, Wang L, Liu YY et al (2012) pH-induced morphology-shifting of DNA-b-poly(propylene oxide) assemblies. Chem Commun 48:9753–9755

    Article  CAS  Google Scholar 

  • Zhao Z, Chen C, Dong Y et al (2014) Thermally triggered frame-guided assembly. Angew Chem Int Ed 53:13468–13470

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang M, Hogle JM et al (2018) DNA-corralled nanodiscs for the structural and functional characterization of membrane proteins and viral entry. J Am Chem Soc 140:10639–10643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Dong Y, Duan Z et al (2021) DNA-organic molecular amphiphiles: synthesis, self-assembly, and hierarchical aggregates. Aggregate 2:e95

    Article  CAS  Google Scholar 

  • Zheng JP, Birktoft JJ, Chen Y et al (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, **e J, Zhang X et al (2021) An overview of polymeric nanomicelles in clinical trials and on the market. Chin Chem Lett 32:243–257

    Article  CAS  Google Scholar 

  • Zhou C, Zhang Y, Dong Y et al (2016) Precisely controlled 2D free-floating nanosheets of amphiphilic molecules through frame-guided assembly. Adv Mater 28:9819–9823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Liu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dong, Y., Liu, D. (2023). The Frame-Guided Assembly of Nucleic Acids. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_61

Download citation

Publish with us

Policies and ethics

Navigation