Synthesis, Properties and Characterization of Metal Nanoparticles

  • Chapter
  • First Online:
Nanoparticles Reinforced Metal Nanocomposites
  • 323 Accesses

Abstract

Precious metals including Au, Pd, Pt, Ag and Pd and other metals such as Fe, Co, Mg and Ni as solid powder, dispersion in solution and deposition as thin films have attained wide interest in the last decades. They have induced intense research interest in nanotechnology due to their exciting properties including good conductivity, magnetic recording, localized surface plasmon resonance, antibacterial and catalytic effects [1, 2]. This chapter will introduce several main synthesis and characterization methods of metallic nanoparticles (NPs). The unique feature, key parameters and especially advantages and disadvantages of top-down (i.e. physical vapour deposition, bill milling and lithography) and bottom-up (e.g. chemical vapour deposition, sol–gel, hydrothermal/solvothermal, etc.) methodologies are discussed to trigger advances in nanotechnology advancement. Alternative green synthesis approaches are also included in this chapter. Furthermore, the basic characterization techniques for metallic NPs are pointed out for improving synthesis strategies, deciphering the topography evolution and comprehending the potential applications. Finally, emphasis has been placed on some main properties of metallic NPs for the potential of a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haritha VS, Balan M, Hosson JTM, Krishnan G (2020) Nanoscale Adv 2:9

    Google Scholar 

  2. Krishnan G, Kooi BJ, Palasantzas G, Pivak Y, Dam B (2010) J Appl Phys 107:5

    Article  Google Scholar 

  3. Liang L, Wang F, Rong M, Wang Z, Yang S, Wang J, Zhou H (2020) J Mater Sci Chem Eng 8:12

    Google Scholar 

  4. Munoz JE, Cervantes J, Esparza R, Rosas G (2007) J Nano Res 9:5

    Article  Google Scholar 

  5. Zarrouk T, Nouari M, Salhi JE, Makich H, Salhi M, Atlati S, Salhi N (2022) Int J Adv Manuf Technol 119

    Google Scholar 

  6. Dercz G, Matula I, Zubko M, Liberska A (2016) Acta Physica Polonoca A 130:4.7

    Google Scholar 

  7. Pradeep NB, Rajath Hegde MM, Manjunath Patel GC, Giasin K, Pimenov DY, Wojciechowski S (2022) J Mater Res Technol 16

    Google Scholar 

  8. Hu X, Sun Z, Zhang C, Wang X, Wu K (2018) J Magnes Alloy 6:2

    Article  Google Scholar 

  9. El-Eskandarany MS, Al-Hazza A, Al-Hajji LA, Ali N, Al-Duweesh AA, Banyan M, Al-Ajmi F (2021) Nanomaterials (Basel) 11:10

    Google Scholar 

  10. Oleszak D, Pawlyta M, Pikula T (2021) Materials (Basel) 14:24

    Article  Google Scholar 

  11. Toozandehjani M, Matori KA, Ostovan F, Abdul Aziz S, Mamat MS (2017) Materials 10:11

    Article  Google Scholar 

  12. Piras CC, Fernández-Prieto S, De Borggraeve WM (2019) Nanoscale Adv 1:3

    Article  Google Scholar 

  13. Lopes WA, Jaeger HM, (2001) Nature 414.

    Google Scholar 

  14. Colson P, Henrist C, Cloots R (2013) J Nanomater 2013:948510

    Article  Google Scholar 

  15. Kothari R, Beaulieu MR, Hendricks NR, Li S, Watkins JJ (2017) Chem Mater 29:9

    Article  Google Scholar 

  16. Kim DE, Sung IH (2013) In: Wang QJ, Chung YW (eds) Encyclopedia of Tribology. Springer, Boston, MA

    Google Scholar 

  17. Lipomi DJ, Martinez RV, Cademartiri L, Whitesides GM In: Matyjaszewski K, Moller M (eds) Polymer science: a comprehensive reference. Elsevier BV, Amsterdam, NL

    Google Scholar 

  18. Paivanranta B, Langner A, Kirk E, David C, Ekinci Y (2011) Nanotechnology 22:37

    Article  Google Scholar 

  19. Auzelyte V, Dais C, Farquet P, Gruetzmacher D, Heyderman L, Luo F, Olliges S, Padeste C, Sahoo P, Thomson T, Turchanin A, David C, Solak H (2009) J Micro/Nanolithogr 8:2

    Google Scholar 

  20. Vala M, Homola J (2014) Opt Express 22:15

    Article  Google Scholar 

  21. Kim P, David E, Raboin L, Ribbe AE, Russell TP, Hoagland DA (2013) Microsc Microanal 19:6

    Google Scholar 

  22. Luo S, Hoff BH, Maier SA, De-Mello JC (2021) Adv Sci 8:24

    Google Scholar 

  23. Wu D, Rajput SN, Luo X (2016) Curr Nanosci 12:6

    Article  Google Scholar 

  24. Leggett GJ (2011) ACS Nano 5:3

    Article  Google Scholar 

  25. Fan P, Gao J, Mao H, Geng Y, Yan Y, Wang Y, Goel S, Luo X (2022) Micromachines 13:2

    Google Scholar 

  26. Savale PA, (2016) Arch Appl Sci Res 8

    Google Scholar 

  27. Grillo F, Van Bui H, Moulijn JA, Kreutzer MT, Van-Ommen JR (2017) J Phys Chem Lett 8:5

    Article  Google Scholar 

  28. Kuwata N, Kawamura J, Toribami K, Hattori T, Sata N (2004) Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition. Electrochem Commun 6:4

    Article  Google Scholar 

  29. Saunders SRJ, Nicholls JR (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th edn.. North-Holland, Oxford, UK

    Google Scholar 

  30. Kerdcharoen T, Wongchoosuk C (2013) In: Jaaniso R, Tan OK (eds) Semiconductor gas sensors. Woodhead Publishing

    Google Scholar 

  31. Kozhemyakin GN, Kiiko SA, Bryl OE (2019) Crystallogr Rep 64:3

    Google Scholar 

  32. Luttge R (2011) In: Luttge R (eds) Microfabrication for industrial applications. William Andrew Publishing, Boston, US

    Google Scholar 

  33. Baptista A, Silva FJG, Porteiro J, Miguez JL, Pinto G (2018) Coatings 8:11

    Article  Google Scholar 

  34. Suryanarayana C, Prabhu B (2007) In: Koch CC (eds) Nanostructured materials, 2nd edn. William Andrew Publishing, Norwich, NY

    Google Scholar 

  35. Shahidi S, Moazzenchi B, Ghoranneviss M (2015) Eur Phys J Appl Phys 71:3

    Article  Google Scholar 

  36. Yin Y, Lan C, Hu S, Li C (2018) J Alloys Comp 739

    Google Scholar 

  37. Pandey PA, Bell GR, Rourke JP, Sanchez AM, Elkin MD, Hickey BJ, Wilson NR (2011) Small 7:22

    Article  Google Scholar 

  38. Fernandez-Arias M, Zimbone M, Boutinguiza M, Del-Val J, Riveiro A, Privitera V, Grimaldi MG, Pou J (2019) Coatings 9:9

    Article  Google Scholar 

  39. Donnelly T, O’Connell G, Lunney JG (2022) Nanomaterials 10:11

    Google Scholar 

  40. Khalily MA, Yurderi M, Haider A, Bulut A, Patil B, Zahmakiran M, Uyar T (2018) ACS Appl Mater Interfaces 10:31

    Article  Google Scholar 

  41. Moret JLTM, Griffiths MBE, Frijns JEBM, Terpstra BE, Wolterbeek HT, Barry ST, Denkova AG, Ommen JRV (2020) J Vac Sci Technol A 38:2

    Article  Google Scholar 

  42. Kumar G, Jagirdar Rao V (2013) Int J Nanotechnol Appl 3:1

    Google Scholar 

  43. Sun G, Ye G, Wang K, Lou M, Jia X, Xu F, Ye Z (2020) ACS Omega 5:13

    Google Scholar 

  44. Ceylan A, Rumaiz AK, Shah SI (2007) J Appl Phys 101:9

    Article  Google Scholar 

  45. Gracia-Pinilla M, Martinez E, Vidaurri GS, Perez-Tijerina E (2009) Nanoscale Res Lett 5:1

    Google Scholar 

  46. Silva LG, Solis-Pomar F, Gutierrez-Lazos CD, Melendrez MF, Martinez E, Fundora A, Perez-Tijerina E (2014). J Nanomater 2014:643967

    Google Scholar 

  47. Ward MB, Brydson R, Cochrane RF (2006) J Physics: Conf Ser 26:296

    Google Scholar 

  48. Alexandrescu R, Morjan I, Dumitrache F, Scarisoreanu M, Soare I, Fleaca C, Birjega R, Popovici E, Gavrila L, Prodan G, Ciupina V, Filoti G, Kuncser V, Vekas L (2008) Int J Photoenergy 2008:604181

    Article  Google Scholar 

  49. Bendre K, Bhat MP, Lee KH, Altalhi T, Ayad Alruqi M, Kurkuri M (2022) Mater Today Adv 13:100205

    Article  Google Scholar 

  50. Spreafico C, Russo D, Degl-Innocenti R (2022) J Intell Manuf 33:2

    Article  Google Scholar 

  51. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) J Drug Deliv Sci Technol 53:101174

    Article  Google Scholar 

  52. Esposito S (2019) Materials (Basel) 12:4

    Article  Google Scholar 

  53. Modan EM, Plaiasu AG (2020) The annals of “Dunarea de Jos” University of Galati, Fascicle IX. Metall Mater Sci 43:1. Accessed 15 Mar 2020

    Google Scholar 

  54. Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E (2021) Adv Mater Sci Eng 2021:5102014

    Article  Google Scholar 

  55. Danks AE, Hall SR, Schnepp Z (2016) Mater Horiz 3:2

    Article  Google Scholar 

  56. Mahmud NA, Habiballah AS, Affandi NSM, Osman N, Jani AMM (2018) AIP Conf Proc 2031:1

    Google Scholar 

  57. Jameel ZN (2017) Energy Procedia 119

    Google Scholar 

  58. Hamada Y, Nishi M, Shimotsuma Y, Miura K, Hirao K (2011) IOP Conf Ser: Mater Sci Eng 8:3

    Google Scholar 

  59. Ligabue ML, Terzi F, Zanardi C, Lusvardi G (2019) J Mater Sci 54:13

    Article  Google Scholar 

  60. Gondal MA, Rashid SG, Dastageer MA, Zubair SM, Ali MA, Lienhard JH, McKinley GH, Varanasi KK (2013) IEEE Photonics J 5:3

    Article  Google Scholar 

  61. Ingale SV, Wagh PB, Bandyopadhyay D, Singh IK, Tewari R, Gupta SC (2015) IOP Conf Ser: Mater Sci Eng 73:1

    Article  Google Scholar 

  62. Ahlawat DS, Kumari, R, Rachna, Yadav I (2014) Int J Nanosci 13:1

    Google Scholar 

  63. Mohindru JJ, Garg UK (2017) Int J Theor Appl Sci 9:2

    Google Scholar 

  64. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) J Nanopart Res 6:4

    Article  Google Scholar 

  65. Piszczek P, Radtke A. (2018) In: Seehra MS, Bristow AD (eds) Noble and precious metals—properties, nanoscale effects and applications. IntechOpen, London, UK. Accessed 20 Dec 2017

    Google Scholar 

  66. **a L (2021) In: Osaka A, Narayan R (eds) Advanced ceramic materials: bioceramics. Elsevier, Osaka, JP

    Google Scholar 

  67. Chew CKT (2016) Chemical vapour deposition of gold nanoparticles and metal oxide composites. Dissertation, University College London

    Google Scholar 

  68. Ng JJ, Leong KH, Sim LC, Oh WD, Dai C, Saravanan P (2020) In: Abdeltif A, Assadi AA, Nguyen-Tri P, Nguyen TA, Rtimi S (eds) Micro and nano technol: nanomaterials for air remediation. Elsevier, Amsterdam, NL

    Google Scholar 

  69. Dunne PW, Munn AS, Starkey CL, Huddle TA, Lester EH (2015) Philos Trans A Math Phys Eng Sci 373:2057

    Google Scholar 

  70. Qiu J, Li Y, Jia Y (2021) In: Qiu J, Li Y, Jia, Y (eds) Persistent phosphors from fundamentals to applications: synthesis method. Woodhead Publishing, Oxford, UK

    Google Scholar 

  71. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A (2016) Peer J 4

    Google Scholar 

  72. Liu Y, Yang L, Shen Y (2018) J Mater Res 33:18

    Google Scholar 

  73. Murugan S, Grace A (2012) J Nano Res 18:1

    Google Scholar 

  74. Lozhkomoev AS, Kazantsev SO, Pervikov AV (2020) AIP Conf Proc 2310:1

    Google Scholar 

  75. Cored J, Garcia-Ortiz A, Iborra S, Climent MJ, Liu L, Chuang CH, Chan TS, Escudero C, Concepcion P, Corma A (2019) J Am Chem Soc 141:49

    Article  Google Scholar 

  76. Parveen K, Banse V, Ledwani L (2016) AIP Conf Proc 1724:1

    Google Scholar 

  77. Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Molecules 20:9

    Article  Google Scholar 

  78. Roychoudhury A (2020) Indian J Pham Biol Res 8:3

    Google Scholar 

  79. Sun Y, Wang Q, Chen J, Liu L, Ding L, Shen M, Li J, Han B, Duan Y (2017) Theranostics 7:18

    Google Scholar 

  80. Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Green Chem Lett Rev 13:3

    Article  Google Scholar 

  81. Zhang D, Ma XI, Gu Y, Huang H, Zhang G (2020) Front Chem 8

    Google Scholar 

  82. AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AEZMA, Husseiny SM (2017) Saudi. J Biol Sci 24:1

    Google Scholar 

  83. Guilger-Casagrande M, Lima RD (2019) Front Bioeng Biotechnol 7:287

    Article  Google Scholar 

  84. AlNadhari S, Al-Enazi NM, Alshehrei F, Ameen F (2021) Environ Res 194:110672

    Article  Google Scholar 

  85. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Biotechnol Prog 22:2

    Article  Google Scholar 

  86. Rautela A, Rani J, Debnath M (2019) J Anal Sci Technol 10:1

    Article  Google Scholar 

  87. Yulizar Y, Utari T, Ariyanta HA, Maulina D (2017) J Nanomater 2017:3079636

    Article  Google Scholar 

  88. Mali SC, Dhaka A, Githala CK, Trivedi R (2020) Biotechnol Rep 27:e00518

    Article  Google Scholar 

  89. Amjad R, Mubeen B, Ali SS, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Rasoo R, Ullah I, Nadeem MS, Kazmi I (2021) Polymers (Basel) 13:24

    Google Scholar 

  90. Wu S, Rajeshkumar S, Madasamy M, Mahendran V (2020) Artif Cells Nanomed B 48:1

    Article  Google Scholar 

  91. Varaprasad T, Govindh B, Venkateswara Rao B (2017) Int J ChemTech Res 10:9

    Google Scholar 

  92. Sunkar S, Nachiyar CV (2012) Asian Pac J Trop Biomed 2:12

    Article  Google Scholar 

  93. Du L, Jiang H, Liu X, Wang E (2007) Electro Comm 9:5

    Google Scholar 

  94. Mikheenko IP, Bennett JA, Omajali JB, Walker M, Johnson DB, Grail BM, Wong-Pascua D, Moseley JD, Macaskie LE (2022) Appl Catal B: Environ 306:121059

    Article  Google Scholar 

  95. Ahghari MR, Soltaninejad V, Maleki A (2020) Sci Rep 10:1

    Article  Google Scholar 

  96. Raliya R, Tarafdar JC (2014) Int Nano Lett 4:1

    Article  Google Scholar 

  97. Li Y, Li Y, Li Q, Fan X, Gao J, Luo Y (2016) J Chem 2016:2781347

    Google Scholar 

  98. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Colloids Surf B: Biointerfaces 74:1

    Article  Google Scholar 

  99. Tian X, He W, Cui J, Zhang X, Zhou W, Yan S, Sun X, Han X, Han S, Yue Y (2010) J Colloid Interface Sci 343:1

    Article  Google Scholar 

  100. Arya A, Gupta K, Chundawat TS, Vaya D (2018) Bioinorg Chem Appl 2018:7879403

    Article  Google Scholar 

  101. Yılmaz Ozturk B, Yenice Gursu B, Dag I (2020) Process Biochem 89

    Google Scholar 

  102. Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Mater Lett 79

    Google Scholar 

  103. Mourdikoudis S, Pallares RM, Thanh NTK (2018) Nanoscale 10:27

    Article  Google Scholar 

  104. Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M (2008) Food Addit Contam: Part A 25:7

    Article  Google Scholar 

  105. Khan I, Saeed K, Khan I (2019) Arabian J Chem 12:7

    Google Scholar 

  106. Lubenchenko AV, Batrakov AA, Pavolotsky AB, Lubenchenko OI, Ivanov DA (2018) Appl Surf Sci 427

    Google Scholar 

  107. Baer DR, Engelhard MH (2010) J Electron Spectrosc Relat Phenom 178–179

    Google Scholar 

  108. Yano J, Yachandra VK (2009) Photosynth Res 102:2–3

    Article  Google Scholar 

  109. Terzano R, Denecke MA, Falkenberg G, Miller B, Paterson D, Janssens K (2019) Pure Appl Chem 91:6

    Article  Google Scholar 

  110. Penner-Hahn JE, X-ray absorption spectroscopy. In eLS

    Google Scholar 

  111. Manjumeena R (2018) In: Tiwari A (eds) Handbook of antimicrobial coatings. Elsevier

    Google Scholar 

  112. Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V (2016) Nanotechnol Environ Eng 1:1

    Article  Google Scholar 

  113. Venkatesh N (2018) Biomed J Sci Technol 4

    Google Scholar 

  114. Shnoudeh AJ, Hamad I, Abdo RW, Qadumii L, Jaber AY, Surchi HS, Alkelany SZ (2019) In: Tekade RK (eds) Biomaterials and bionanotechnology. Academic Press

    Google Scholar 

  115. Zavasnik J, Sestan A, Shvalya V (2021) In: Milacic R, Scancar J, Goenaga-Infante H, Vidmar J (eds) Comprehensive analytical chemistry. Elsevier, Amasterdam, NL

    Google Scholar 

  116. Eaton P, Quaresma P, Soares C, Neves C, De-Almeida MP, Pereira E, West P (2017) Ultramicroscopy 182

    Google Scholar 

  117. Malm AV, Corbett JCW (2019) Sci Rep 9:1

    Article  Google Scholar 

  118. Griffiths D, Hole WBP, Smith J, Malloy A, Carr B (2011) NSTI-Nanotech 1

    Google Scholar 

  119. Clogston JD, Patri AK (2011) In: McNeil S (eds) Characterization of nanoparticles intended for drug delivery. Humana Press, Maryland, USA

    Google Scholar 

  120. Nanocomposix, Zeta Potential Measurements (2022) https://nanocomposix.com/pages/zeta-potential-measurements

  121. Bonnin EA, Rizzoli SO (2020) Front Behav Neurosci 14

    Google Scholar 

  122. Wang C, Gao X, Chen Z, Chen Y, Chen H (2017) Polymers 9:12

    Article  Google Scholar 

  123. Din M, Arshad F, Hussain Z, Mukhtar M (2017) Nanoscale Res Lett 12

    Google Scholar 

  124. Linkov P, Artemyev M, Efimov AE, Nabiev I (2013) Nanoscale 5:19

    Article  Google Scholar 

  125. Choudhary OP, Choudhary P (2017) Int J Curr Microbiol Appl Sci 6

    Google Scholar 

  126. Smith DJ (2015) Nanocharacterisation. The Royal Society of Chemistry

    Google Scholar 

  127. Chiriaco M, Bianco M, Nigro A, Primiceri E, Ferrara F, Romano A, Quattrini A, Furlan R, Arima V, Maruccio G (2018) Sensors 18:3175

    Article  Google Scholar 

  128. Lim J, Yeap SP, Che HX, Low SC (2013) Nanoscale Res Lett 8:1

    Article  Google Scholar 

  129. Grunder Y, Lucas C (2016) Nano Energy 29:1

    Article  Google Scholar 

  130. Baer DR (2022) J Vac Sci Technol 38:3

    Google Scholar 

  131. San-Miguel A (2005) Acta Crystallogr Sec A 61.

    Google Scholar 

  132. Bak SM, Lin R, Yu X, Yang XQ (2018) NPG Asia Mater 10

    Google Scholar 

  133. Thermoscientific, Advantages of a Fourier Transform Infrared Spectrometer (Technical Note). https://www.thermoscientific.com/content/dam/tfs/ATG/CAD/CAD%20Documents/Application%20%26%20Technical%20Notes/Molecular%20Spectroscopy/FTIR/FTIR%20Spectrometers/TN50674-E-0215M-FT-IR-Advantages.pdf

  134. Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SVNT, Moon D (2013) J Vac Sci Technol A 31:5

    Article  Google Scholar 

  135. Khandel P, Shahi KS (2016) Int J Nanomater Biostruc 6:1

    Google Scholar 

  136. Fratoddi I, Matassa R, Fontana L, Venditti I, Familiari G, Battocchio C, Magnano E, Nappini S, Leahu G, Belardini A, Li Voti R, Sibilia C (2017) J Phys Chem C 121:33

    Article  Google Scholar 

  137. Zhu S, Zhou W (2010) J Nanomater 2010:562035

    Google Scholar 

  138. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Adv Mater 22:16

    Google Scholar 

  139. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chem Comm 5

    Google Scholar 

  140. Mulvaney P (1996) Optical properties of metal clusters By U. Kreibig, M. Vollmer, Springer Series in Materials Science, Advanced Materials. Wiley, Hardcover, DM

    Google Scholar 

  141. Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Int J Mol Sci 14:11

    Article  Google Scholar 

  142. Diaz C, Valenzuela ML, Laguna-Bercero MA, Orera A, Bobadilla D, Abarca S, Pena O (2017) RSC Adv 7:44

    Google Scholar 

  143. Sani A, Cao C, Cui D (2021) Biochem Biophys Rep 26

    Google Scholar 

  144. Leon Felix L, Sanz B, Sebastian V, Torres TE, Sousa MH, Coaquira JAH, Ibarra MR, Goya GF (2019) Sci Rep 9:1

    Article  Google Scholar 

  145. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Electroanalysis 18:4

    Google Scholar 

  146. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Comp Mater 40:17

    Article  Google Scholar 

  147. Maharaj D, Bhushan B (2014) Beilstein J Nanotechnol 5

    Google Scholar 

  148. Guo D, Li J, Chang L, Luo J (2013) Langmuir 29:23

    Google Scholar 

  149. Ritter C, Heyde M, Schwarz UD, Rademann K (2002) Langmuir 18:21

    Article  Google Scholar 

  150. Sharma A, Hickman J, Gazit N, Rabkin E, Mishin Y (2018) Nat Comm 9:1

    Article  Google Scholar 

  151. Mbambo MC, Khamlich S, Khamliche T, Moodley MK, Kaviyarasu K, Madiba IG, Madito MJ, Khenfouch M, Kennedy J, Henini M, Manikandan E, Maaza M (2020) Sci Rep 10:1

    Article  Google Scholar 

  152. Iyahraja S, Rajadurai JS (2015) AIP Adv 5:5

    Article  Google Scholar 

  153. Farid N, Sedigheh A (2017) J Adv Mater Proc 5:2

    Google Scholar 

  154. Liu M, Ma Y, Wu H, Wang RY (2015) ACS Nano 9:2

    Google Scholar 

  155. Navarrete N, Gimeno-Furio A, Mondragon R, Hernandez L, Cabedo L, Cordoncillo E, Julia JE (2017) Sci Rep 7:1

    Article  Google Scholar 

  156. Warrier P, Teja A (2011) Nanoscale Res Lett 6:1

    Article  Google Scholar 

  157. Guoqing Z, Yan** X, Hui W, Yu T, Guoliang T, Shantung T, Hai** W (2009) J Comp Mater 44:8

    Google Scholar 

  158. Li X, Park W, Chen YP, Ruan X (2013) J Heat Transfer 139:2

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Leverhulme Trust Early Career Fellowship (ECF-2021-657) and Nottingham Research Fellowship (A7X164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ola .

Editor information

Editors and Affiliations

Ethics declarations

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thummavichai, K., Chen, Y., Wang, N.N., Zhu, Y.Q., Ola, O. (2023). Synthesis, Properties and Characterization of Metal Nanoparticles. In: Tiwari, S.K., Kumar, V., Thomas, S. (eds) Nanoparticles Reinforced Metal Nanocomposites. Springer, Singapore. https://doi.org/10.1007/978-981-19-9729-7_6

Download citation

Publish with us

Policies and ethics

Navigation