Progress in Metal Nanoparticles-Based Elastic Materials

  • Chapter
  • First Online:
Nanoparticles Reinforced Metal Nanocomposites

Abstract

Metal nanoparticles incorporation in several materials have greatly enhanced their properties and also resulted in some unique features that can be very beneficial for the future. These nanoparticles show potential for devices such as polymers, biomedical devices, hydrogels, glass composites, printable electronics, and superhydrophobic materials. The materials, thus formed, have favorable physical as well as chemical properties and have shown enhancements in modulus of elasticity, impact strength, hardness, optical properties, thermomechanical properties, low dielectric loss, self-healing properties, biocompatibility, excellent durability, and more. The advancements achieved in several elastic-material applications over the last decade, with the incorporation of several metal nanoparticles, have been discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 121.31
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartland GV (2004) Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy. Phys Chem Chem Phys 6(23):5263–5274. https://doi.org/10.1039/B413368D

    Article  Google Scholar 

  2. Mahross HZ, Baroudi K (2015) Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material. Eur J Dent 09(02):207–212. https://doi.org/10.4103/1305-7456.156821

    Article  Google Scholar 

  3. Basova TV et al (2021) The use of noble metal coatings and nanoparticles for the modification of medical implant materials. Mater Des 204:109672. https://doi.org/10.1016/j.matdes.2021.109672

    Article  Google Scholar 

  4. Kumar HK et al (2018) Metallic nanoparticle: a review. Biomed J Sci Tech Res 4(2):3765–3775. https://doi.org/10.26717/BJSTR.2018.04.00

  5. dos Santos CA, Ingle AP, Rai M (2020) The emerging role of metallic nanoparticles in food. Appl Microbiol Biotechnol 104(6):2373–2383. https://doi.org/10.1007/s00253-020-10372-x

    Article  Google Scholar 

  6. Vural M et al (2015) Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano 9(1):336–344. https://doi.org/10.1021/nn505306h

    Article  MathSciNet  Google Scholar 

  7. You I, Kong M, Jeong U (2019) Block copolymer elastomers for stretchable electronics. Acc Chem Res 52(1):63–72. https://doi.org/10.1021/acs.accounts.8b00488

    Article  Google Scholar 

  8. Sengwa RJ, Dhatarwal P (2021) Polymer nanocomposites comprising PMMA matrix and ZnO, SnO2, and TiO2 nanofillers: a comparative study of structural, optical, and dielectric properties for multifunctional technological applications. Opt Mater 113:110837. https://doi.org/10.1016/j.optmat.2021.110837

    Article  Google Scholar 

  9. Guo W et al (2019) Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl Mater Interfaces 11(8):8567–8575. https://doi.org/10.1021/acsami.8b21836

    Article  Google Scholar 

  10. Quinsaat JEQ et al (2015) Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. J Mater Chem A 3(28):14675–14685. https://doi.org/10.1039/C5TA03122B

    Article  Google Scholar 

  11. Feng P, Zhong M, Zhao W (2019) Stretchable multifunctional dielectric nanocomposites based on polydimethylsiloxane mixed with metal nanoparticles. Mater Res Express 7(1): 015007. https://doi.org/10.1088/2053-1591/ab5b4b

  12. Bele A et al (2018) Conductive stretchable composites properly engineered to develop highly compliant electrodes for dielectric elastomer actuators. Smart Mater Struct 27(10):105005. https://doi.org/10.1088/1361-665x/aad977

    Article  Google Scholar 

  13. Yoon IS et al (2020) Ag flake/silicone rubber composite with high stability and stretching speed insensitive resistance via conductive bridge formation. Sci Rep 10(1):5036. https://doi.org/10.1038/s41598-020-61752-2

    Article  Google Scholar 

  14. Tang M et al (2020) Silver dendrites based electrically conductive composites, towards the application of stretchable conductors. Compos Commun 19:121–126. https://doi.org/10.1016/j.coco.2020.03.010

    Article  Google Scholar 

  15. Dinh T et al (2020) Stretchable respiration sensors: advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens Bioelectron 166:112460. https://doi.org/10.1016/j.bios.2020.112460

    Article  Google Scholar 

  16. Liu Y, Ji X, Liang J (2021) Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. NPJ Flex Electron 5(1): 11. https://doi.org/10.1038/s41528-021-00108-w

  17. Lin Y, Genzer J, Dickey MD (2020) Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv Sci 7(12):2000192. https://doi.org/10.1002/advs.202000192

    Article  Google Scholar 

  18. Bark H et al (2021) Deformable high loading liquid metal nanoparticles composites for thermal energy management. Adv Energy Mater 11(35):2101387. https://doi.org/10.1002/aenm.202101387

    Article  Google Scholar 

  19. Lyu J et al (2016) High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers. Adv Func Mater 26(46):8435–8445. https://doi.org/10.1002/adfm.201603230

    Article  Google Scholar 

  20. Pusty M, Shirage PM (2020) Gold nanoparticle–cellulose/PDMS nanocomposite: a flexible dielectric material for harvesting mechanical energy. RSC Adv 10(17):10097–10112. https://doi.org/10.1039/C9RA10811D

    Article  Google Scholar 

  21. Kausar A (2019) Polymeric nanocomposites reinforced with nanowires: opening doors to future applications. J Plastic Film Sheeting 35(1):65–98. https://doi.org/10.1177/8756087918794009

  22. Atta A (2020) Enhanced dielectric properties of flexible Cu/polymer nanocomposite films. Surf Innovations 9(1):17–24. https://doi.org/10.1680/jsuin.20.00020

    Article  MathSciNet  Google Scholar 

  23. Antonucci V, Martone A (2015) Chapter 2—phenomenology of shape memory alloys. In: Lecce L, Concilio A (eds) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 33–56. https://doi.org/10.1016/B978-0-08-099920-3.00002-4

  24. Zareie S et al (2020) Recent advances in the applications of shape memory alloys in civil infrastructures: a review. Structures 27:1535–1550. https://doi.org/10.1016/j.istruc.2020.05.058

    Article  Google Scholar 

  25. Van Humbeeck J (2001) Shape memory alloys: a material and a technology. Adv Eng Mater 3(11):837–850. https://doi.org/10.1002/1527-2648(200111)3:11%3c837::AID-ADEM837%3e3.0.CO;2-0

    Article  Google Scholar 

  26. Hassanzadeh-Aghdam MK, Mahmoodi MJ (2018) Micromechanics-based characterization of elastic properties of shape memory polymer nanocomposites containing SiO2 nanoparticles. J Intell Mater Syst Struct 29(11):2392–2405. https://doi.org/10.1177/1045389X18770862

    Article  Google Scholar 

  27. Ma A et al (2018) Surface-initiated metal-free photoinduced ATRP of 4-vinylpyridine from SiO2 via visible light photocatalysis for self-healing hydrogels. Ind Eng Chem Res 57(51):17417–17429. https://doi.org/10.1021/acs.iecr.8b05020

    Article  Google Scholar 

  28. Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng, A 273–275:134–148. https://doi.org/10.1016/S0921-5093(99)00293-2

    Article  Google Scholar 

  29. Karaca HE et al (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544. https://doi.org/10.1179/1743284714Y.0000000598

    Article  Google Scholar 

  30. Kang G, Song D (2015) Review on structural fatigue of NiTi shape memory alloys: pure mechanical and thermo-mechanical ones. Theor Appl Mech Lett 5(6):245–254. https://doi.org/10.1016/j.taml.2015.11.004

    Article  Google Scholar 

  31. Gu D et al (2021) Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness. Virtual Phys Prototy** 16(sup1):S19–S38. https://doi.org/10.1080/17452759.2021.1892389

    Article  Google Scholar 

  32. Ko W-S et al (2021) Dissecting functional degradation in NiTi shape memory alloys containing amorphous regions via atomistic simulations. Acta Mater 202:331–349. https://doi.org/10.1016/j.actamat.2020.10.070

    Article  Google Scholar 

  33. Yi X et al (2021) The higher compressive strength (TiB+La2O3)/Ti–Ni shape memory alloy composite with the larger recoverable strain. Compos Commun 23:100583. https://doi.org/10.1016/j.coco.2020.100583

    Article  Google Scholar 

  34. Melaiye A, Youngs WJ (2005) Silver and its application as an antimicrobial agent. Expert Opin Ther Pat 15(2):125–130. https://doi.org/10.1517/13543776.15.2.125

    Article  Google Scholar 

  35. Zhang E et al (2021) Antibacterial metals and alloys for potential biomedical implants. Bioactive Mater 6(8):2569–2612. https://doi.org/10.1016/j.bioactmat.2021.01.030

    Article  Google Scholar 

  36. Jiao J et al (2021) Recent advances in research on antibacterial metals and alloys as implant materials. Front Cell Infect Microbiol 11. https://doi.org/10.3389/fcimb.2021.693939

  37. Sun B et al (2018) Martensite structure and mechanical property of Ti-Nb-Ag shape memory alloys for biomedical applications. Vacuum 156:181–186. https://doi.org/10.1016/j.vacuum.2018.07.029

    Article  Google Scholar 

  38. Toriyabe A et al (2021) Mechanical property enhancement of the Ag–tailored Au–Cu–Al shape memory alloy via the ductile phase toughening. Intermetallics 139:107349. https://doi.org/10.1016/j.intermet.2021.107349

    Article  Google Scholar 

  39. Shafique M, Luo X (2019) Nanotechnology in transportation vehicles: an overview of its applications, environmental, health and safety concerns. Materials (Basel, Switzerland) 12(15):2493. https://doi.org/10.3390/ma12152493

    Article  Google Scholar 

  40. Jiang Z et al (2020) Vibration dam** mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites. Compos B Eng 199:108266. https://doi.org/10.1016/j.compositesb.2020.108266

    Article  Google Scholar 

  41. Yang Q et al (2019) Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Constr Build Mater 201:580–589. https://doi.org/10.1016/j.conbuildmat.2018.12.173

    Article  Google Scholar 

  42. Roustazadeh D, Aghadavoudi F, Khandan A (2020) A synergic effect of CNT/Al2O3 reinforcements on multiscale epoxy-based glass fiber composite: fabrication and molecular dynamics modeling. Mol Simul 46(16):1308–1319. https://doi.org/10.1080/08927022.2020.1815729

    Article  Google Scholar 

  43. Joshi UA, Sharma SC, Harsha SP (2012) Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Compos B Eng 43(4):2063–2071. https://doi.org/10.1016/j.compositesb.2012.01.063

    Article  Google Scholar 

  44. Shan C et al (2013) Three-Dimensional Nitrogen-Doped Multiwall Carbon Nanotube Sponges with Tunable Properties. Nano Lett 13(11):5514–5520. https://doi.org/10.1021/nl403109g

    Article  Google Scholar 

  45. Alam A et al (2018) Polymer composite hydrogels containing carbon nanomaterials—morphology and mechanical and functional performance. Prog Polym Sci 77:1–18. https://doi.org/10.1016/j.progpolymsci.2017.09.001

    Article  Google Scholar 

  46. Deka BK et al (2016) Interfacial resistive heating and mechanical properties of graphene oxide assisted CuO nanoparticles in woven carbon fiber/polyester composite. Compos A Appl Sci Manuf 80:159–170. https://doi.org/10.1016/j.compositesa.2015.10.023

    Article  Google Scholar 

  47. Balguri PK, Samuel DGH, Thumu U (2021) A review on mechanical properties of epoxy nanocomposites. Mater Today: Proc 44:346–355. https://doi.org/10.1016/j.matpr.2020.09.742

    Article  Google Scholar 

  48. Lakshmikandhan T et al (2016) Development and characterization of functionalized Al2O3 and TiO2-reinforced polybenzoxazine nanocomposites. Des Monomers Polym 19(1):67–76. https://doi.org/10.1080/15685551.2015.1092014

    Article  Google Scholar 

  49. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  Google Scholar 

  50. Mantha S et al (2019) Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel, Switzerland) 12(20):3323. https://doi.org/10.3390/ma12203323

    Article  Google Scholar 

  51. Peng Q et al (2020) Recent advances in designing conductive hydrogels for flexible electronics. InfoMat 2(5):843–865. https://doi.org/10.1002/inf2.12113

    Article  Google Scholar 

  52. Rafieian S et al (2019) A review on nanocomposite hydrogels and their biomedical applications. Sci Eng Compos Mater 26(1):154–174. https://doi.org/10.1515/secm-2017-0161

    Article  Google Scholar 

  53. Sun Z et al (2020) Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. Int J Biol Macromol 155:1569–1577. https://doi.org/10.1016/j.ijbiomac.2019.11.134

    Article  Google Scholar 

  54. Zhang Y et al (2020) Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart Mater Struct 29(7):075027. https://doi.org/10.1088/1361-665X/ab89ff

    Article  Google Scholar 

  55. Zhang Z et al (2021) Highly stretchable porous composite hydrogels with stable conductivity for strain sensing. Compos Sci Technol 213:108968. https://doi.org/10.1016/j.compscitech.2021.108968

    Article  Google Scholar 

  56. Zhou H et al (2020) Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring. Colloids Surf, A 592:124587. https://doi.org/10.1016/j.colsurfa.2020.124587

    Article  Google Scholar 

  57. Chen K et al (2021) Highly stretchable, tough, and conductive Ag@Cu nanocomposite hydrogels for flexible wearable sensors and bionic electronic skins. Macromol Mater Eng 306(10):2100341. https://doi.org/10.1002/mame.202100341

    Article  Google Scholar 

  58. Ohm Y et al (2021) Publisher correction: an electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat Electron 4(4):313–313. https://doi.org/10.1038/s41928-021-00571-3

    Article  Google Scholar 

  59. Murali Mohan Y et al (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342(1):73–82. https://doi.org/10.1016/j.jcis.2009.10.008

    Article  Google Scholar 

  60. Mao J et al (2020) Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel. Compos Commun 17:22–27. https://doi.org/10.1016/j.coco.2019.10.007

    Article  Google Scholar 

  61. Xu J et al (2020) Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices. Chem Eng J 392:123788. https://doi.org/10.1016/j.cej.2019.123788

    Article  Google Scholar 

  62. Ng LY et al (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. https://doi.org/10.1016/j.desal.2010.11.033

    Article  Google Scholar 

  63. Zhang J et al (2020) Improving actuation strain and breakdown strength of dielectric elastomers using core-shell structured CNT-Al2O3. Compos Sci Technol 200:108393. https://doi.org/10.1016/j.compscitech.2020.108393

    Article  Google Scholar 

  64. Etemadi H et al (2021) Effect of alumina nanoparticles on the antifouling properties of polycarbonate-polyurethane blend ultrafiltration membrane for water treatment. Polym Eng Sci 61(9):2364–2375. https://doi.org/10.1002/pen.25764

    Article  Google Scholar 

  65. Bet-moushoul E et al (2016) TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem Eng J 283:29–46. https://doi.org/10.1016/j.cej.2015.06.124

    Article  Google Scholar 

  66. Wei Y et al (2011) Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination 272(1):90–97. https://doi.org/10.1016/j.desal.2011.01.013

    Article  MathSciNet  Google Scholar 

  67. Lin Y et al (2015) Enhancing mechanical and photocatalytic performances on TiO2/Ti composite ultrafiltration membranes via Ag do** method. Sep Purif Technol 145:29–38. https://doi.org/10.1016/j.seppur.2015.02.024

    Article  Google Scholar 

  68. Sigwadi R et al (2018) Mechanical strength of Nafion®/ZrO2 nano-composite membrane. Int J Manuf Mater Mech Eng (IJMMME) 8(1):54–65. https://doi.org/10.4018/IJMMME.2018010104

  69. Sigwadi R et al (2019) Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon 5(7):e02112. https://doi.org/10.1016/j.heliyon.2019.e02112

    Article  Google Scholar 

  70. Liu C et al (2018) Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics. Express Polym Lett 12(4)

    Google Scholar 

  71. Benavente J et al (2017) Inclusion of silver nanoparticles for improving regenerated cellulose membrane performance and reduction of biofouling. Int J Biol Macromol 103:758–763. https://doi.org/10.1016/j.ijbiomac.2017.05.133

    Article  Google Scholar 

  72. Torres-Torres D et al (2020) Magnetic force microscopy study of multiscale ion-implanted platinum in silica glass, recorded by an ultrafast two-wave mixing configuration. Microsc Microanal 26(1):53–62. https://doi.org/10.1017/S1431927619015204

    Article  Google Scholar 

  73. Gutiérrez-Menchaca J et al (2021) Enhanced fracture toughness of silica glass by ion-implanted platinum nanoparticles. Fatigue Fract Eng Mater Struct 44(6):1423–1438. https://doi.org/10.1111/ffe.13437

    Article  Google Scholar 

  74. Liu L, Shinozaki K (2021) Toughening silica glass by imparting ductility using a small amount of silver nanoparticles. Mater Sci Eng, A 817:141372. https://doi.org/10.1016/j.msea.2021.141372

    Article  Google Scholar 

  75. Uddin MF, Sun CT (2008) Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos Sci Technol 68(7):1637–1643. https://doi.org/10.1016/j.compscitech.2008.02.026

    Article  Google Scholar 

  76. Pedrazzoli D, Pegoretti A (2013) Silica nanoparticles as coupling agents for polypropylene/glass composites. Compos Sci Technol 76:77–83. https://doi.org/10.1016/j.compscitech.2012.12.016

    Article  Google Scholar 

  77. Matori KA et al (2017) Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. J Non-Cryst Solids 457:97–103. https://doi.org/10.1016/j.jnoncrysol.2016.11.029

    Article  Google Scholar 

  78. Matori KA et al (2013) Study of the elastic properties of (PbO)x(P2O5)1–x lead phosphate glass using an ultrasonic technique. J Non-Cryst Solids 361:78–81. https://doi.org/10.1016/j.jnoncrysol.2012.10.022

    Article  Google Scholar 

  79. Sayyed MI et al (2020) The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses. J Market Res 9(4):8429–8438. https://doi.org/10.1016/j.jmrt.2020.05.113

    Article  Google Scholar 

  80. Aydemir T et al (2021) Morphological and mechanical characterization of chitosan/gelatin/silica-gentamicin/bioactive glass coatings on orthopaedic metallic implant materials. Thin Solid Films 732:138780. https://doi.org/10.1016/j.tsf.2021.138780

    Article  Google Scholar 

  81. Nayak RK (2019) Influence of seawater aging on mechanical properties of nano-Al2O3 embedded glass fiber reinforced polymer nanocomposites. Constr Build Mater 221:12–19. https://doi.org/10.1016/j.conbuildmat.2019.06.043

    Article  Google Scholar 

  82. Nayak RK, Ray BC (2018) Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites. Arch Civil Mech Eng 18(4):1597–1607. https://doi.org/10.1016/j.acme.2018.07.002

    Article  Google Scholar 

  83. Salimian S, Zadhoush A (2019) Water-glass based silica aerogel: unique nanostructured filler for epoxy nanocomposites. J Porous Mater 26(6):1755–1765. https://doi.org/10.1007/s10934-019-00757-3

    Article  Google Scholar 

  84. Sapiai N et al (2020) Tensile and flexural properties of silica nanoparticles modified unidirectional kenaf and hybrid glass/kenaf epoxy composites. Polymers 12(11). https://doi.org/10.3390/polym12112733

  85. Rahimi S et al (2020) Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite properties as potential dental applications. Ceram Int 46(8, Part A):10910–10916. https://doi.org/10.1016/j.ceramint.2020.01.105

  86. Zhang WW et al (2018) A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy. Mater Sci Eng, A 734:34–41. https://doi.org/10.1016/j.msea.2018.07.082

    Article  Google Scholar 

  87. Ghidelli M et al (2021) Novel class of nanostructured metallic glass films with superior and tunable mechanical properties. Acta Mater 213:116955. https://doi.org/10.1016/j.actamat.2021.116955

    Article  Google Scholar 

  88. Huang L et al (2020) A high-strength Co–Fe–Ta–B metallic-glass phase enabled tensile plasticity in Co–Fe–Ta–B–O oxide glass matrix nanocomposites. Appl Phys Lett 116(8):081903. https://doi.org/10.1063/1.5143598

    Article  Google Scholar 

  89. Luo W et al (2022) A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv Sci 9(4):2104163. https://doi.org/10.1002/advs.202104163

    Article  Google Scholar 

  90. Park M et al (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7(12):803–809. https://doi.org/10.1038/nnano.2012.206

    Article  Google Scholar 

  91. Su X et al (2018) Highly stretchable and conductive superhydrophobic coating for flexible electronics. ACS Appl Mater Interfaces 10(12):10587–10597. https://doi.org/10.1021/acsami.8b01382

    Article  Google Scholar 

  92. Zhan Y et al (2021) Superhydrophobic and flexible silver nanowire-coated cellulose filter papers with sputter-deposited nickel nanoparticles for ultrahigh electromagnetic interference shielding. ACS Appl Mater Interfaces 13(12):14623–14633. https://doi.org/10.1021/acsami.1c03692

    Article  Google Scholar 

  93. Xu C-L et al (2017) Surface modification with hierarchical CuO arrays toward a flexible, durable superhydrophobic and self-cleaning material. Chem Eng J 313:1328–1334. https://doi.org/10.1016/j.cej.2016.11.024

    Article  Google Scholar 

  94. Zhai S, Zhao H (2019) Silica-coated metallic nanoparticle-based hierarchical super-hydrophobic surfaces fabricated by spin-coating and inverse nanotransfer printing. Appl Phys Lett 114(23):233702. https://doi.org/10.1063/1.5098780

    Article  Google Scholar 

  95. Choi S et al (2019) High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 48(6):1566–1595. https://doi.org/10.1039/C8CS00706C

    Article  Google Scholar 

  96. Hasan MM, Hossain MM (2021) Nanomaterials-patterned flexible electrodes for wearable health monitoring: a review. J Mater Sci 56(27):14900–14942. https://doi.org/10.1007/s10853-021-06248-8

    Article  Google Scholar 

  97. Lee J-W et al (2021) Synthesis of silver nanoparticles embedded with single-walled carbon nanotubes for printable elastic electrodes and sensors with high stability. Sci Rep 11(1):5140. https://doi.org/10.1038/s41598-021-84386-4

    Article  Google Scholar 

  98. Hu Y et al (2018) A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res 11(4):1938–1955. https://doi.org/10.1007/s12274-017-1811-0

    Article  Google Scholar 

  99. Yoon S, Kim H-K (2020) Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors. Surf Coat Technol 384:125308. https://doi.org/10.1016/j.surfcoat.2019.125308

    Article  Google Scholar 

  100. Hwang B-Y et al (2018) Highly stretchable and transparent electrode film based on SWCNT/Silver nanowire hybrid nanocomposite. Compos B Eng 151:1–7. https://doi.org/10.1016/j.compositesb.2018.06.004

    Article  Google Scholar 

  101. Min S-H, Lee G-Y, Ahn S-H (2019) Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites. Compos B Eng 161:395–401. https://doi.org/10.1016/j.compositesb.2018.12.107

    Article  Google Scholar 

  102. ** H et al (2019) Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 13(7):7905–7912. https://doi.org/10.1021/acsnano.9b02297

    Article  Google Scholar 

  103. Gruber B et al (2020) Mechanism of low temperature deformation in aluminium alloys. Mater Sci Eng A 795:139935. https://doi.org/10.1016/j.msea.2020.139935

    Article  Google Scholar 

  104. Li X et al (2020) 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater 10:1903794. https://doi.org/10.1002/aenm.201903794

    Article  Google Scholar 

  105. Duan M, Luo L, Liu Y (2020) Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: grain and texture gradient. J Alloy Compd 823:153691. https://doi.org/10.1016/j.jallcom.2020.153691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrestha, R., Ban, S., Khatiwada, G., Kafle, S.R., Tiwari, S.K., Joshi, R. (2023). Progress in Metal Nanoparticles-Based Elastic Materials. In: Tiwari, S.K., Kumar, V., Thomas, S. (eds) Nanoparticles Reinforced Metal Nanocomposites. Springer, Singapore. https://doi.org/10.1007/978-981-19-9729-7_11

Download citation

Publish with us

Policies and ethics

Navigation