Boundary Layer on an Inclined Flat Plate

  • Chapter
  • First Online:
Global Stability Analysis of Shear Flows

Abstract

This chapter presents a global stability analysis of the two-dimensional incompressible boundary layer with the effect of streamwise pressure gradients. A symmetric wedge flow with different non-dimensional pressure gradient parameters (\(\beta _{H}\)) has been considered. The pressure gradient (\({\text {d}}p/{\text {d}}x\)) in the flow direction is zero for \(\beta _{H} = 0\), favourable (negative) for \(\beta _H > 0\) and adverse (positive) for \(\beta _H < 0\). The base flow is computed by the numerical solution of the Falkner-Skan equation. The displacement thickness (\(\delta ^*\)) at the inflow boundary is considered for computing the Reynolds number. The governing stability equations for perturbed flow quantities are derived in the body-fitted coordinates. The stability equations are discretized using Chebyshev spectral collocation method. The discretized equations and boundary conditions form a general eigenvalues problem and are solved using Arnoldi’s algorithm. The global temporal modes have been computed for \(\beta _H=0.022\), 0.044 and 0.066 for favourable and adverse pressure gradients. The temporal growth rate (\(\omega _i\)) is negative for all the global modes. The \(\omega _i\) is smaller for the favourable pressure gradient (FPG) than that of the adverse pressure gradient (APG) at the same Reynolds number (\({\text {Re}} = 340\)). Thus, FPG has a stabilization effect on the boundary layer. Comparing the spatial eigenmodes and spatial amplification rate for FPG and APG show that FPG has a stabilization effect while APG has a destabilization effect on the disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22, 213–228 (1980)

    Article  Google Scholar 

  2. Akervik, E., Ehrenstein, U., Gallaire, F., Henningson, D.: Global two-dimensional stability measure of the flat plate boundary layer flow. Eur. J. Mech. B/Fluids 27, 501–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alizard, F., Robinet, J.C.: Spatially convective global modes in a boundary layer. Phys. Fluids 19, 114105 (2007)

    Article  MATH  Google Scholar 

  4. Bhoraniya, R., Vinod, N.: Global stability analysis of axisymmetric boundary layer over a circular cone. J. Phys. Conf. Ser. 822, 012018 (2017)

    Google Scholar 

  5. Bhoraniya, R., Vinod, N.: Global stability analysis of axisymmetric boundary layer over a circular cone. Phys. Rev. Fluids 02, 063901 (2017)

    Article  Google Scholar 

  6. Bhoraniya, R., Vinod, N.: Global stability analysis of axisymmetric boundary layer over a circular cylinder. Theor. Comput. Fluid Dyn. 32, 425–449 (2018)

    Article  MathSciNet  Google Scholar 

  7. Blumer, C.B., Van Driest, E.R.: Boundary layer transition: free-stream turbulence and pressure gradient effect. AIAA J. 1, 1303–1306 (1963)

    Article  MATH  Google Scholar 

  8. Chonghui, L.: A numerical investigation of instability and transition in adverse pressure gradient boundary layers. Ph.D Thesis, McGill University, Montreal (1997)

    Google Scholar 

  9. Corbett, P., Bottaro, A.: Optimal perturbations for boundary layers subject to streamwise pressure gradient. Phys. Fluids 12, 120–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corke, T.C., Gruber, S.: Resonant growth of three-dimensional modes in Falkner-Skan boundary layers with adverse pressure gradient. J. Fluid Mech. 320, 211–233 (1996)

    Article  Google Scholar 

  11. Costa, B., Don, W., Simas, A.: Spatial resolution properties of mapped spectral Chebyshev methods. In: Proceedings of SCPDE: Recent Progress in Scientific Computing, pp. 179–188 (2007)

    Google Scholar 

  12. Ehrenstein, U., Gallaire, F.: On two-dimensional temporal modes in spatially evolving open flow: the flat-plate boundary layer. J. Fluid Mech. 536, 209–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fasel, H., Rist, U., Konzelmann, U.: Numerical investigation of the three-dimensional development in boundary layer transition. AIAA J. 28, 29–37 (1990)

    Article  MathSciNet  Google Scholar 

  14. Franko, K.J., Lele, S.: Effect of adverse pressure gradient on high speed boundary layer transition. Phys. Fluids 26, 24106 (2014)

    Article  Google Scholar 

  15. Garnaud, X., Schimd, P.J., Huerre, P.: Modal and transient dynamics of jet flows. Phys. Fluids 25, 044103 (2013)

    Google Scholar 

  16. Gostelow, J.P., Blunden, A.R.: Investigation of boundary layer transition in an adverse pressure gradient. ASME J. Turbomach. 111, 366–374 (1989)

    Article  Google Scholar 

  17. Gostelow, J.P., Blunden, A.R., Walker, G.J.: Effect of free-stream turbulence and adverse pressure gradients on boundary layer transition. ASME J. Turbomach. 116, 392–404 (1994)

    Article  Google Scholar 

  18. Govindarajan, R., Narasimha, R.: Stability of spatially develo** boundary layers in pressure gradients. J. Fluid Mech. 300, 117–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Igarashi, S., Sasaki, H., Honda, M.: Influence of pressure gradient upon boundary layer stability and transition. Acta Mechanica 73, 187–198 (1988)

    Article  Google Scholar 

  20. Itoh, N.: Effect of pressure gradients on the stability of three-dimensional boundary layers. Fluid Dyn. Res. 7, 37–50 (1991)

    Article  Google Scholar 

  21. Johnson, M.W., Pinarbasi, A.: The effect of pressure gradients on boundary layer receptivity. Flow Turbulence Combust. 93, 1–24 (2014)

    Article  Google Scholar 

  22. Kimmel, R.L.: The effect of pressure gradients on transition zone length in hypersonic boundary layer. Flight Dynamics Directorate (1993)

    Google Scholar 

  23. Liu, C., Maslowe, S.A.: A numerical investigation of resonant interactions in adverse pressure gradient boundary layers. J. Fluid Mech. 378, 269–289 (1999)

    Article  Google Scholar 

  24. Mack, L.M.: A numerical study of temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73, 497–520 (1976)

    Article  MATH  Google Scholar 

  25. Malik, M.R.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86(2), 376–412 (1990)

    Article  MATH  Google Scholar 

  26. Marquet, O., Sipp, D., Jacquin, L.: Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221–252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Masad, J.A., Zurigat, Y.H.: The effect of pressure gradients on first mode of instability in compressible boundary layer. Phys. Fluids 6 (1994)

    Google Scholar 

  28. Maslowe, S.A., Spiteri, R.J.: The continuous spectrum for a boundary layer in a streamwise pressure gradient. Phys. Fluids 13, 1294 (2001)

    Article  MATH  Google Scholar 

  29. N, V., Govindarajan, R.: The signature of laminar instabilities in the zone of transition to turbulence. J. Turbulence 8, 1–17 (2007)

    Google Scholar 

  30. Narasimha, R.: The laminar-turbulent transition zone in the boundary layer. Prog. Aero. Sci. 22, 29–80 (1985)

    Article  Google Scholar 

  31. Nichols, J.W., Lele, S.K.: Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225–241 (2011)

    Article  MATH  Google Scholar 

  32. Obremski, H.J., Morkovin, M.V., Landahl, M.: A portfolio of stability characteristics of incompressible boundary layer. AGARDograph 134 (1969)

    Google Scholar 

  33. Saxena, S.K., Bose, T.K.: Numerical study of effect of pressure gradient on stability of an incompressible boundary layer. Phys. Fluids 17, 1910–1912 (1974)

    Article  MATH  Google Scholar 

  34. Schlichting, H.: Concerning the origin of turbulence in a rotating cylinder. Math. Phys. Klasse. 2, 160–198 (1932)

    MATH  Google Scholar 

  35. Seifert, A., Hodson, H.P.: Periodic turbulent strips and calmed regions in a transitional boundary layer. AIAA J. 37, 1127–1129 (1999)

    Article  Google Scholar 

  36. Sipp, D., Lebedev, D.: Global stability of base and mean flows: a general approach to its applications to cylinder and open cavity flow. J. Fluid Mech. 593, 333–358 (2007)

    Article  MATH  Google Scholar 

  37. Swaminathan, G., Shahu, K., Sameen, A., Govindarajan, R.: Global instabilities in diverging channel flows. Theor. Comput. Fluid Dyn. 25, 25–64 (2011)

    Article  MATH  Google Scholar 

  38. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three dimensional flows. Prog. Aerosp. Sci. 39, 249–315 (2003)

    Article  Google Scholar 

  39. Tumin, A., Ashpis, D.E.: Optimal disturbances in boundary layers subject to streamwise pressure gradient. In: 33rd AIAA Fluid Dynamic Conference (2003)

    Google Scholar 

  40. Vinod, N., Govindarajan, R.: Pattern of breakdown of laminar flow into turbulent spots. Phys. Rev. Lett. 93, 114501 (2004)

    Article  Google Scholar 

  41. Walker, G., Gostelow, J.P.: Effect of adverse pressure gradients on the nature and length of boundary layer transition. In: Gas Turbines and Aeroengine Congress and Exposition (1989)

    Google Scholar 

  42. Zhang, W., Yang, H., Hua-Shu, D., Zuchao, Z.: Flow unsteadiness and stability characteristics of low-re flow past an inclined triangular cylinder. J. Fluids Eng. 139, 121203 (2017)

    Article  Google Scholar 

  43. Zurigat, Y.H., Nayfeh, A.H., Masad, J.A.: Effect of pressure gradient on the stability of compressible boundary layers. AIAA J. 30, 2204–2211 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshkumar Bhoraniya .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhoraniya, R., Swaminathan, G., Narayanan, V. (2023). Boundary Layer on an Inclined Flat Plate. In: Global Stability Analysis of Shear Flows. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9574-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9574-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9573-6

  • Online ISBN: 978-981-19-9574-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation