Consortia of Probiotic Bacteria and Their Potentials for Sustainable Rice Production

  • Chapter
  • First Online:
Sustainable Agrobiology

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 43))

  • 336 Accesses

Abstract

The application of plant probiotic bacteria for a sustainable environment-friendly agriculture system has created new avenues with integration of modern technology and eco-friendly management approaches. With a goal of using minimum chemical fertilizer and getting sustainable yield in cereal grains, especially of the rice crop, biological alternatives, such as biofertilizers, are inevitable for achieving sustainable development goal 2 (SDG-2). Rice, as the prime and staple food of Asian countries, also requires careful fertilization which is expensive and hazardous to the environment. The root and rhizosphere of rice harbor a plethora of probiotic bacteria belonging to diverse taxonomic groups. The use of alternative approaches especially the formulation and application of biofertilizer using the identified elite strains of probiotic bacteria is a blooming technology that can create a sustainable and environment-friendly rice production system. And consequently, significant developments have been achieved in using biofertilizers for rice cultivation throughout the world. Among the biofertilizer technologies, the majority of them are occupied by plant-associative or free-living bacteria under the genera of Rhizobium, Bacillus, Paraburkholderia, Delftia, Pseudomonas, Lysobacter, Azotobacter, Azospirillum, Enterobacter, Brevibacterium, etc. A large body of literature is available on the development of biofertilizers that are capable of steady supply of N through fixation of atmospheric nitrogen and solubilization of essential nutrient elements in the rhizosphere, and provide other benefits to partially supplement the use of chemical fertilizers. It appears that the application of probiotic bacterial consortium as biofertilizer could be a sustainable approach for rice production. This chapter reviews and updates the isolation and identification of probiotic bacteria, and the effects of their consortium as well as their mode of beneficial effects for sustainable rice production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Malik NA, Kumar IS, Nadarajah K (2020) Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci:1–34

    Google Scholar 

  • Abdullah AB, Ito S, Adhana K (2006) Estimate of rice consumption in Asian countries and the world towards 2050. In Proceedings for Workshop and Conference on Rice in the World at Stake, 2, 28–43

    Google Scholar 

  • Alor ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  Google Scholar 

  • Alves GC, Videira SS, Urquiaga S, Reis VM (2014) Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387(1-2):307–321

    Article  Google Scholar 

  • Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol 38(12):1385–1396. https://doi.org/10.1016/j.tibtech.2020.04.01

    Article  CAS  PubMed  Google Scholar 

  • Aw XZL, Li WC, Ye ZH (2020) The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere 242:125136. https://doi.org/10.1016/j.chemosphere.2019.125136

    Article  CAS  PubMed  Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249(2):271–277

    Article  Google Scholar 

  • Bahat-Samet E, Castro-Sowinski S, Okon Y (2004) Arabinose content of extracellular Polysaccharide plays a role in cell aggregation of Azospirillum brasilense. FEMS Microbiol Lett 237:195–203

    Article  CAS  PubMed  Google Scholar 

  • Banik A, Kumar DG, Swain P, Kumar U, Mukhopadhyay SK, Dangar TK (2018) Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiol Res:S0944501318306633–. https://doi.org/10.1016/j.micres.2018.11.004

  • Barea JM, Werner D, Azcón-Aguilar C, Azco’n R (2005) Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: Werner D, Newton WE (eds) Agriculture, forestry, ecology and the environment. Kluwer, The Netherlands

    Google Scholar 

  • Bentley BL, Carpenter EJ (1984) Direct transfer of newly-fixed nitrogen from free-living epiphyllous microorganisms to their host plant. Oecologia 63(1):52–56

    Article  PubMed  Google Scholar 

  • Burragoni SG, Jeon J (2021) Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol Res 245:126691

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Sharma AK (2021) Field evaluation of consortium of bacterial inoculants producing ACC deaminase on growth, nutrients and yield components of rice and wheat. J Crop Sci Biotechnol 24:293–305. https://doi.org/10.1007/s12892-020-00077-y

    Article  CAS  Google Scholar 

  • Chandran V, Shaji H, Mathew L (2020) Endophytic microbial influence on plant stress responses. Microbial endophytes, 161–193

    Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact. https://doi.org/10.1094/MPMI-03-15-0066-R

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney S, O’Brien S, Iversen C, Fanning S (2014) Bacteria: other pathogenic Enterobacteriaceae – Enterobacter and other genera. Encyclopedia of Food Safety, 433–441

    Google Scholar 

  • Coutte F, Lecouturier D, Dimitrov K, Guez JS, Delvigne F, Dhulster P, Jacques P (2017) Microbial lipopeptide production and purification bioprocesses, current progress and future challenges. Biotechnol J 12(7):1600566

    Article  Google Scholar 

  • De Souza Vandenberghe LP, Garcia LMB, Rodrigues C, Camara MC, de Melo Pereira GV, de Oliveira J, Soccol CR (2017) Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiol 3(3):629

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629

    Article  Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39(7):869–878

    Article  CAS  PubMed  Google Scholar 

  • Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, Nuti M (2008) Single and coinoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40(2):260–270

    Article  Google Scholar 

  • Fgaier H, Eberl HJ (2011) Antagonistic control of microbial pathogens under iron limitations by siderophore producing bacteria in a chemostat setup. J Theor Biol 273(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix JD, Fernández MT, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5):38122

    Article  Google Scholar 

  • Gopalakrishnan S, Upadhyaya HD, Vadlamudi S, Humayun P, Vidya MS, Alekhya G, Rupela O (2012) Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. Springer Plus 1(1):1–7

    Article  Google Scholar 

  • Gore NS, Navale AM (2017) Effect of consortia of potassium solubilizing bacteria and fungi on growth, nutrient uptake and yield of banana. Indian J Hortic 74(2):189–197

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117

    Article  CAS  PubMed  Google Scholar 

  • Habib SH, Kausar H, Saud HM, Ismail MR, Othman R (2016) Molecular characterization of stress tolerant plant growth promoting rhizobacteria (PGPR) for growth enhancement of rice. Int J Agric Biol 18:184–191

    Article  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harshal VD, Anupama AP, Vitthal TB, Syed GD, Altafhusain BN (2021) Rhizobacterial consortium mediated aroma and yield enhancement in basmati and non-basmati rice (Oryza sativa L.). J Biotechnol 328:47–58. https://doi.org/10.1016/j.jbiotec.2021.01.012

    Article  CAS  Google Scholar 

  • Hashem A, Tabassum B, Fathi Abd Allah E (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Natural Product Report

    Google Scholar 

  • Hirt H (2020) Healthy soils for healthy plants for healthy humans: how beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. EMBO Rep 21:e51069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseyni M, Soltani J (2013) An investigation on the effects of photoperiod, aging and culture media on vegetative growth and sporulation of rice blast pathogen Pyricularia oryzae. Prog Biol Sci 3:135–143

    Google Scholar 

  • Hu J, Yang T., Friman, V, Kowalchuk GA, Hautier Y., Li M., Wei Z. Xu Y. and Shen Q. (2021a) Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proc R Soc B 288: 20211396. https://doi.org/10.1098/rspb.2021.1396

  • Hu HY, Li H, Hao MM, Ren YN, Zhang MK, Liu RY, Zhang Y, Li G, Chen JS, Ning TY (2021b) Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria. J Appl Ecol 58:2243–2255

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain N, Bilal M, Iqbal HM (2022) Carbon-based nanomaterials with multipurpose attributes for water treatment: greening the 21st-century nanostructure materials deployment. Biomater Polym Horiz 1:1–11

    Google Scholar 

  • Islam M, Hossain M (2012) Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In: Islam MT et al (eds) Bacteria in agrobiology: plant probiotics. Springer, Switzerland, pp 325–363

    Chapter  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) (2005) Suppression of dam**-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71(7):3786–3796. https://doi.org/10.1128/AEM.71.7.3786-3796.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Deora A, Hashidoko Y, Rahman A, Ito T, Tahara T (2007) Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Z Naturforsch 62 c:103–110

    Article  Google Scholar 

  • Islam T, Rahman M, Pandey P, Boehme MH, Haesaert G (2019a) Bacilli and agrobiotechnology: phytostimulation and biocontrol, vol 2. Springer Nature, Bremgarten

    Book  Google Scholar 

  • Islam M, Sano A, Majumder M, Hossain M, Sakagami J (2019b) Isolation and molecular characterization of phosphate solubilizing filamentous fungi from subtropical soils in Okinawa. Appl Ecol Environ Res 17:9145–9157

    Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15(9):894–906

    Article  CAS  PubMed  Google Scholar 

  • Kannojia P, Choudhary KK, Srivastava AK, Singh AK (2019) PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. In PGPR amelioration in sustainable agriculture. Wood head Publishing, Sawston, pp 67–84

    Google Scholar 

  • Khan MMA, Haque E, Paul NC, Khaleque MA, Al-Garni SM, Rahman M, Islam MT (2017) Enhancement of growth and grain yield of rice in nutrient deficient soils by rice probiotic bacteria. Rice Sci 24(5):264–273

    Article  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6. https://doi.org/10.1007/s11103-005-2159-5

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee J, Lee CH, Woo SY, Kang H, Seo SG, Kim SH (2015) Activation of pathogenesis-related genes by the rhizobacterium, bacillus sp. JS, which induces systemic resistance in tobacco plants. The. Plant Pathol J 31(2):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Suyal DC, Sharma IP, Verma A, Singh H (2017) Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: a proteomic approach to understand heat stress response. 3 Biotech 7(3):1–8

    Article  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CM, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas JA, Ramos Solano B, Montes F, Ojeda J, Megias M, Gutierrez Mañero FJ (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in southern Spain. Field Crop Res 114(3):404–410

    Article  Google Scholar 

  • Maheshwari DK (2012) Bacteria in agrobiology: plant probiotics || Consortium of Plant-Growth-Promoting Bacteria: Future Perspective in Agriculture. (Chapter 10) 185–200. doi:https://doi.org/10.1007/978-3-642-27515-9_10

  • Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. Sustainable Development and Biodiversity, 159–182

    Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. In Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 37–44

    Book  Google Scholar 

  • Menendez E, Garcia-Fraile P (2017) Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol 3(3):502–524. https://doi.org/10.3934/microbiol.2017.3.502. PMID: 31294173; PMCID: PMC6604988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menéndez E, Paço A (2020) Is the application of plant probiotic bacterial consortia always beneficial for plants? Exploring synergies between rhizobial and non-rhizobial bacteria and their effects on agro-economically valuable crops. Life 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2009) Enhanced emergence and vigour seedling production of rice through plant growth promoting bacterial inoculation. Res J Seed Sci 2:96–104

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria : a scenario of rice and bananas. Int J Bot 6(3):235–242

    Article  Google Scholar 

  • Mia MB, Shamsuddin ZH (2013) Biofertilizer for banana production. LAP LAMBERT Academic Publishing, London

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (1999) External and internal root colonization of Azospirillum brasilense on tissue-cultured banana plantlets. In proc. eighth scientific conference of electron microscopy society, Malaysia, pp. 173–174

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2007) Associative nitrogen fixation by Azospirillum and bacillus spp. in bananas. Infomusa 16(1 & 2):11–15

    Google Scholar 

  • Mia MB, Shamsuddin ZH, Wahab Z, Marziah M (2009) The effect of rhizobacterial inoculation on growth and nutrient accumulation of tissue-cultured banana plantlets under low N-fertilizer regime. Afr J Biotechnol 8(21)

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2010a) Rhizobacterial inoculation on growth and nitrogen incorporation in tissue-cultured Musa plantlets under nitrogen-free hydroponics condition. Aust J Crop Sci 4(2):85–90

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2010b) Rhizobacteria as bioenhancer for growth and yield of banana (Musa spp. cv “Berangan”). Sci Hortic 126(2):80–87

    Article  Google Scholar 

  • Mia M, Baset A, Hossain M, Shamsuddin ZH, Islam MT (2013) Plant-associated bacteria in nitrogen nutrition in crops, with special reference to rice and banana. Bacteria in agrobiology: crop productivity, 97–126

    Google Scholar 

  • Milner J, Silo-Suh L, Goodman RM, Handelsman J (2019) Antibiosis and beyond: genetic diversity, microbial communities, and biological control. In ecological interactions and biological control. CRC Press, Boca Raton, FL, pp 107–127

    Book  Google Scholar 

  • Molina-Romero D, Juárez-Sánchez S, Venegas B, Ortíz-González CS, Baez A, Morales-García YE, Muñoz-Rojas J (2021) Bacterial consortium interacts with different varieties of maize, promotes the plant growth, and reduces the application of chemical fertilizer under field conditions. Front Sustain Food Syst 4. https://doi.org/10.3389/fsufs.2020.616757

  • Molla M, Chowdhury AA (1984) Microbial mineralization of organic phosphate in soil. Plant Soil 78:393–399

    Article  CAS  Google Scholar 

  • Mutalib AA, Radziah O, Shukor Y, Naher UA (2012) Effect of nitrogen fertilizer on hydrolytic enzyme production, root colonization, N metabolism, leaf physiology and growth of rice inoculated with Bacillus sp. (Sb42). Aust. J Crop Sci 6(9):1383–1389

    Google Scholar 

  • Muthayya S, Sugimoto JD, Scott M, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324(1):7–14. https://doi.org/10.1111/nyas.12540

    Article  PubMed  Google Scholar 

  • Naher UA, Othman R, Shamsuddin ZH, Saud HM, Ismail MR (2009) Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. Int J Agric Biol 11:586–590

    Google Scholar 

  • Nevita T, Sharma GD, Pandey P (2018) Differences in rice rhizosphere bacterial community structure by application of lignocellulolytic plant-probiotic bacteria with rapid composting traits. Ecol Eng 120:209–221

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  • Othman R, Panhwar QA (2014) Phosphate-solubilizing bacteria improves nutrient uptake in aerobic Rice. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer, Cham

    Google Scholar 

  • Padmaperuma G (2020) Microbial consortia: Concept and application in fruit crop management. Fruit Crops:353–366. https://doi.org/10.1016/B978-0-12-818732-6.00025-3

  • Pandey P, Bisht S, Sood A, Aeron A, Sharma GD, Maheshwari DK (2012) Consortium of plant-growth-promoting bacteria: future perspective in agriculture. In: Maheshwari D (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_10

    Chapter  Google Scholar 

  • Pang Z, Zhao Y, Xu P, Yu D (2020) Microbial diversity of upland rice roots and their influence on rice growth and drought tolerance. Microorganisms 8(9):1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panhwar QA, Radziah O, Zaharah AR, Sariah M, Razi IM (2011) Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. J Environ Biol 32(5):607

    CAS  PubMed  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5-6):325–336

    Article  PubMed  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review. Biol Fertil Soils 51(4):403–415

    Article  CAS  Google Scholar 

  • Pretali L, Bernardo L, Butterfield TS, Trevisan M, Lucini L (2016) Botanical and biological pesticides elicit a similar induced systemic response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry 130:56–63

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan M, Alam M, Mohi-Ud-Din M, Miah M, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:1–11

    Article  Google Scholar 

  • Ray M, Hor PK, Singh SN, Mondal KC (2017) Screening of health beneficial microbes with potential probiotic characteristics from the traditional rice-based alcoholic beverage, haria. Acta Biol Szegediensis 61(1):51–58

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6(4):139–144

    Article  CAS  PubMed  Google Scholar 

  • Ruiza D, Agaras B, de Werrab P, Wall LG, Valverde C (2011) Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J Microbiol 49(6):902–912

    Article  CAS  Google Scholar 

  • Saber WI, Ghoneem KM, Al-Askar AA, Rashad YM, Ali AA, Rashad EM (2015) Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of rhizoctonia diseases of potato. Acta Biol Hung 66(4):436–448

    Article  CAS  PubMed  Google Scholar 

  • Saha C, Mukherjee G, Agarwal BP, Seal A (2016) A consortium of non-rhizobial endophytic microbes from Typha angustifolia functions as probiotics in rice and improves nitrogen metabolism. Plant Biol 18(6):938–946. https://doi.org/10.1111/plb.1248

    Article  CAS  PubMed  Google Scholar 

  • Salamone GIE, Funes JM, Di Salvo LP, Escobar-Ortega JS, D’Auria F, Ferrando L, Fernandez-Scavino A (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204. https://doi.org/10.1016/j.apsoil.2011.12.012

    Article  Google Scholar 

  • Santoyo G (2022) How plants recruit their microbiome? New insights into beneficial interactions. J Adv Res 40:45–58

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR (2021) Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 10(6):475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker A, Islam MT, Biswas GC, Alam MS, Hossain M, Talukder NM (2012) Screening for phosphate solubilizing bacteria inhibiting the rhizoplane of rice grown in acidic soil of Bangladesh. Acta Microbiol Immunol Hung 59:199–213

    Article  Google Scholar 

  • Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum ). J Crop Improv 29(3):353–369. https://doi.org/10.1080/15427528.2015.1027979

    Article  CAS  Google Scholar 

  • Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E (2015) A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119(6):1467–1481

    Article  CAS  PubMed  Google Scholar 

  • Seldin L (2011) Paenibacillus, nitrogen fixation and soil fertility. In Endospore-forming soil bacteria. Springer, Berlin, Heidelberg, pp 287–307

    Book  Google Scholar 

  • Sen S, Chandrasekhar CN (2014) Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 4(5):62–67

    Google Scholar 

  • Shabanamol S, Edna MV, Meenu T, Karthika S, Sreekumar J, Jisha MS (2020) Enhancement of growth and yield of Rice (Oryza sativa) by plant probiotic endophyte, Lysinibacillus sphaericus under greenhouse conditions. Commun Soil Sci Plant Anal 51(9):1268–1282. https://doi.org/10.1080/00103624.2020.1751190

    Article  CAS  Google Scholar 

  • Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Koushal S, Kumar A, Vimal SR and Gupta VK (2016) Book review: microbial inoculants in sustainable agricultural productivity-vol II: functional application

    Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27(3):141–150

    Article  CAS  PubMed  Google Scholar 

  • Soltani SM, Hanafi MM, Karbalaei MT, Khayambashi B (2013) Qualitative land suitability evaluation for the growth of rice and off-seasons crops as rice based crop** system on paddy fields of central Guilan, Iran. Indian J Sci Technol 6(10):5395–5403

    Article  Google Scholar 

  • Stephen J, Shabanamol S, Rishad KS, Jisha MS (2015) Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp.(MTCC 8368) and Burkholderia sp.(MTCC 8369) under greenhouse conditions. 3. Biotech 5(5):831–837

    Google Scholar 

  • Tan KZ, Radziah O, Halimi MS et al (2015) Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Aust J Crop Sci 9:1257–1264

    CAS  Google Scholar 

  • Tang MJ, Zhu Q, Zhang FM, Zhang W, Yuan J, Sun K et al (2019) Enhanced nitrogen and phosphorus activation with an optimized bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil. Microbiol Res 221:50–59

    Article  CAS  PubMed  Google Scholar 

  • Toju H, Okayasu K, Notaguchi M (2019) Leaf-associated microbiomes of grafted tomato plants. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Toure Y, Ongena MARC, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96(5):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Trân Van V, Berge O, Ngô Kê S, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Article  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Umashankari J, Sekar C (2011) Comparative evaluation of different bioformulations of PGPR cells on the enhancement of induced systemic resistance (ISR) in Rice P. oryzae pathosystem under upland condition. Curr Bot 2:12–17

    CAS  Google Scholar 

  • Valenzuela-Ruiz V, Robles-Montoya RI, Parra-Cota FI, Santoyo G, del Carmen Orozco-Mosqueda M, Rodríguez-Ramírez R, de Los Santos-Villalobos S (2019) Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech 9(11):1–7

    Article  Google Scholar 

  • WFE (2022). https://www.weforum.org/agenda/2022/03/visualizing-the-world-s-biggest-rice-producers/. Accessed 6 Oct 2022

  • Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci 9:1801. https://doi.org/10.3389/fpls.2018.01801

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini AK, Ninke S, Philip Hollingsworth G, Orgambide F, de Bruijn J, Stoltzfus D, Buckley TM, Schmidt PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28(9):845–870

    Article  CAS  Google Scholar 

  • Yanni Y, Zidan M, Dazzo F, Rizk R, Mehesen A, Abdelfattah F, Elsadany A (2016) Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agric Ecosyst Environ 232:119–128. https://doi.org/10.1016/j.agee.2016.07.006

    Article  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. Int Rice Res Inst

    Google Scholar 

  • Yu X, Ai C, **n L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

  • Zubaidah E, Nurcholis M, Wulan SN, Kusuma A (2012) Comparative study on synbiotic effect of fermented rice bran by probiotic lactic acid bacteria Lactobacillus casei and newly isolated Lactobacillus plantarum B2 in wistar rats. APCBEE Procedia 2:170–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tofazzal Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mia, M.A.B., Momotaj, A., Islam, T. (2023). Consortia of Probiotic Bacteria and Their Potentials for Sustainable Rice Production. In: Maheshwari, D.K., Dheeman, S. (eds) Sustainable Agrobiology. Microorganisms for Sustainability, vol 43. Springer, Singapore. https://doi.org/10.1007/978-981-19-9570-5_8

Download citation

Publish with us

Policies and ethics

Navigation