Future is on Cheap Metal Oxides—A Review

  • Chapter
  • First Online:
Nano Metal Oxides

Abstract

Quantum mechanical confinement and increased availability of surface atoms than inside atoms for participating in any reaction, metal oxide nanoparticles have distinct physical, chemical, optical, and electronic properties compared to their bulk counterparts. Surface area, shape, size, stability, crystallinity, anticorrosiveness, conductivity, and photocatalytic activity are all qualities that metal oxide nanoparticles have. In general, there are two types of metal oxide nanoparticle synthesis methods: I physical methods such as ball milling, sputtering, laser ablation, electrospraying, and electron beam evaporation; and (ii) chemical processes such as sol–gel, polyol, hydrothermal, co-precipitation, microemulsion, and chemical vapour deposition, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Parashar, Mritunjaya, Vivek Kumar Shukla, and Ranbir Singh. 2020. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics.https://doi.org/10.1007/s10854-020-02994-8

  2. Bratovcic, Amra. 2020. Synthesis, characterization, applications, and toxicity of lead oxide nanoparticles. Lead chemistry edited by pipat chooto. https://doi.org/10.5772/intechopen.91362

  3. Kashani-Motlagh, Mohammad Mehdi, and Masoumeh Karami Mahmoudabad. Synthesis and characterization of lead oxide nano-powders by sol–gel method. Journal of Sol-Gel Science and Technology 59: https://doi.org/10.1007/s10971-011-2467-y

  4. Yousefi, Ramin, Ali Khorsand Zak, Farid Jamali-Sheini, Nay Ming Huang, Wan Jefrey Basirun, and M. Sookhakian. 2014. Synthesis and characterization of single crystal PbO nanoparticles in a gelatin medium. Ceramics International. https://doi.org/10.1016/j.ceramint.2014.03.180

  5. Elawam, Sarah A., Wafaa M. Morsi, Hoda M. Abou-Shady, and Osiris W. Guirguis. 2016. Characterizations of beta-lead oxide “Massicot” nano-particles. British Journal of Applied Science & Technology 17 (1). Article no.BJAST.28143 ISSN: 2231-0843, NLM ID: 101664541.

    Google Scholar 

  6. Shakeel, M., F. Jabeen, S. Shabbir, M.S. Asghar, M.S. Khan, and A.S. Chaudhry. 2016. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: A review. Biological Trace Element Research 172: 1–36.

    Article  Google Scholar 

  7. Norton, D.P., Y. Heo, M. Ivill, K. Ip, S. Pearton, M.F. Chisholm, and T. Steiner. 2004. ZnO: Growth, do** & processing. Materials Today 7: 34–40.

    Article  Google Scholar 

  8. Pearton, S., D. Norton, K. Ip, Y. Heo, and T. Steiner. 2005. Recent progress in processing and properties of ZnO. Progress on Material Science 50: 293−340.

    Google Scholar 

  9. Klingshirn, C. 2007. ZnO: Material, physics and applications. Chem. Phys. Chem. 8: 782–803.

    Article  Google Scholar 

  10. Ellmer, K., A. Klein, and B. Rech. 2007. Transparent conductive zinc oxide: Basics and applications in thin film solar cells. Berlin: Springer Science & Business Media.

    Google Scholar 

  11. Serizawa, T., T. Sawada, and H. Matsuno. 2007. Highly specific affinities of short peptides against synthetic polymers. Langmuir 23: 11127–11133.

    Article  Google Scholar 

  12. Hirai, T., Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno. 2005. Luminescence of excitons in mesoscopic ZnO particles. Journal of Luminescence 112: 196–199.

    Article  ADS  Google Scholar 

  13. Ozgur, U., D. Hofstetter, and H. Morkoc. 2010. ZnO devices and applications: A review of current status and future prospects. Proceedings of the IEEE 98: 1255–1268.

    Article  Google Scholar 

  14. Ahmed, M.H., T.E. Keyes, J.A. Byrne, C.W. Blackledge, and J.W. Hamilton. 2011. Adsorption and photocatalytic degradation of human serum albumin on TiO2 and Ag-TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry 222: 123–131.

    Article  Google Scholar 

  15. **a, Y., J. Wang, R. Chen, D. Zhou, and L. **ang. 2016. A review on the fabrication of hierarchical ZnO nanostructures for photo catalysis application. Crystals 6: 148.

    Article  Google Scholar 

  16. Bunn, C. 1935. The lattice-dimensions of zinc oxide. Proceedings of the Physical Society 47: 835.

    Article  ADS  Google Scholar 

  17. Moezzi, A., A.M. McDonagh, and M.B. Cortie. 2012. Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal 185–186: 1–22.

    Article  Google Scholar 

  18. Brayner, R., R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, and F. Fiévet. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Letters 6: 866−870.

    Google Scholar 

  19. Reddy, K.M., K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters 90: 213902.

    Article  ADS  Google Scholar 

  20. Nohynek, G.J., J. Lademann, C. Ribaud, and M.S. Roberts. 2007. Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology 37: 251–277.

    Article  Google Scholar 

  21. Tankhiwale, R., and S. Bajpai. 2012. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids and Surfaces B 90: 16–20.

    Article  Google Scholar 

  22. Espitia, P.J.P., J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, and N. de Fátima Ferreira Soares. 2012. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technology 5: 1447−1464.

    Google Scholar 

  23. He, D., X. He, X. Yang, and H. Li. 2017. A Smart ZnO@ polydopamine-nucleic acid anosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures. Chemical Science 8: 2832–2840.

    Article  Google Scholar 

  24. Shanmugam, N.R., S. Muthukumar, and S. Prasad. 2017. A review on ZnO-based electrical biosensors for cardiac biomarker detection. Future Science OA 3: FSO196.

    Google Scholar 

  25. Tang, C.C., S.S. Fan, M.L.d.l. Chapelle, and P. Li. 2001. Silica-assisted catalytic growth of oxide and nitride nanowires. Chemical Physics Letters 333: 12−15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthikeyan, B., Gnanakumar, G., Therasa Alphonsa, A. (2023). Future is on Cheap Metal Oxides—A Review. In: Nano Metal Oxides. Springer, Singapore. https://doi.org/10.1007/978-981-19-9444-9_7

Download citation

Publish with us

Policies and ethics

Navigation