Biological Interactions of Metal Oxides—An Insight

  • Chapter
  • First Online:
Nano Metal Oxides

Abstract

Metal oxide (MO)-based bioinorganic structures such as ZnO, TiO2, SiO2, and GeO2 have significantly increased. Besides traditional approaches, the synthesis, sha**, structural patterning, and post-processing chemical functionalization of the surface of the material are inspired by strategies that mimic processes in nature. This is particularly of concern to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. This chapter is to present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. The challenges hamper progress in research and extrapolate to develo** and promising directions including additive manufacturing and synthetic biology that could benefit from a molecular-level understanding of interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Saravanan, M., S.K. Barik, D. MubarakAli, P. Prakash, and A. Pugazhendhi. 2018. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial Pathogenesis 116: 221–226.

    Article  Google Scholar 

  2. Samuel, M.S., S. Jose, E. Selvarajan, T. Mathimani, and A. Pugazhendhi. 2020. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. Journal of Photochemistry and Photobiology, B: Biology 202: 111642.

    Article  Google Scholar 

  3. Hosseini-Koupaei, M., B. Shareghi, A.A. Saboury, F. Davar, V.A. Sirotkin, M.H. Hosseini- Koupaei, and Z. Enteshari. 2019. Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. International Journal of Biological Macromolecules 122: 732–744.

    Article  Google Scholar 

  4. Rahman, A., A. Ismail, D. Jumbianti, S. Magdalena, and H. Sudrajat. 2010. Synthesis of copper oxide nano particles by using Phormidium cyanobacterium. Indonesian Journal of Chemistry 9: 355–360.

    Article  Google Scholar 

  5. Ghasemi, N., F. Jamali-Sheini, and R. Zekavati. 2017. CuO and Ag/CuO nanoparticles: Biosynthesis and antibacterial properties. Materials Letters 196: 78–82.

    Article  Google Scholar 

  6. Saif Hasan, S., S. Singh, R.Y. Parikh, M.S. Dharne, M.S. Patole, M.L.V. Prasad, et al. 2008. Bacterial synthesis of copper/copper oxide nanoparticles. Journal of Nanoscience and Nanotechnology 8: 3191–3196.

    Article  Google Scholar 

  7. Suresh, C. M., R. Shani, and T. Rohini. 2019. Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemistry and Biophysics Reports 20: 100699.

    Google Scholar 

  8. Duman, F., I. Ocsoy, and F.O. Kup. 2016. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Materials Science and Engineering C 60: 333–338.

    Article  Google Scholar 

  9. Ismail, O., L.P. Mathews, A.O. Muserref, K. Sanju, C. Tao, Y. Mingxu, and T. Weihong. 2013. Nanotechnology in plant disease management: DNA directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nanomaterials 7: 8972–8980.

    Google Scholar 

  10. Ismail, O., G. Basri, C. Tao, Z. Guizhi, C. Zhuo, M.S. Mufrettin, P. Lu, X. **angling, and T. Weihong. 2013. DNA-Guided-Metal nanoparticle formation on graphene oxide surface. Advanced Materials 25 (16): 2319–2325.

    Article  Google Scholar 

  11. Rupak, T., B. Chintan, S. Pragya, A. Suvash, and D. Pravin. 2017. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Annals of Clinical Microbiology and Antimicrobials 16: 39.

    Article  Google Scholar 

  12. Rezaie, A.B., M. Montazer, and M.M. Rad. 2017. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles. Journal of Photochemistry and Photobiology, B: Biology 176: 100–111.

    Article  Google Scholar 

  13. Singhal, G., and R. Bhavesh. 2011. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research 13: 2981–2988.

    Article  ADS  Google Scholar 

  14. Zhao, J., L. Bowman, X. Zhang, V. Vallyathan, S. Young, V. Castranova, and M. Ding. 2009. Titanium dioxide (TiO2) nanoparticles induce JB6 Cell apoptosis through activation of the caspase-8/bid and mitochondrial pathways. Journal of Toxicology & Environmental Health Part A: Current Issues 72: 1141–1149.

    Article  Google Scholar 

  15. Fabian, E., R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, and B. van Ravenzwaay. 2008. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Archives of Toxicology 82: 151–157.

    Article  Google Scholar 

  16. Oberdörster, G. 2000. Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health 74: 1−8.

    Google Scholar 

  17. Vranic, S., I. Gosens, N.R. Jacobsen, K.A. Jensen, B. Bokkers, A. Kermanizadeh, V. Stone, A. Baeza-Squiban, F.R. Cassee, L. Tran, et al. 2017. Impact of serum as a dispersion agent for in vitro Andin vivo toxicological assessments of TiO2 nanoparticles. Archives of Toxicology 91: 353–363.

    Article  Google Scholar 

  18. Rizk, M.Z., S.A. Ali, M.A. Hamed, N.S. El-Rigal, H.F. Aly, and H.H. Salah. 2017. Toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomedicine & Pharmacotherapy 90: 466–472.

    Article  Google Scholar 

  19. Hong, F., L. Ji, Y. Zhou, and L. Wang. 2017. Chronic nasal exposure to nanoparticulate TiO2 causes pulmonary tumorigenesis in male mice. Environmental Toxicology 32: 1651–1657.

    Article  ADS  Google Scholar 

  20. Lin, X., J. Li, S. Ma, G. Liu, K. Yang, M. Tong, and D. Lin. 2014. Toxicity of TiO2 nanoparticles to Escherichia coli: Effects of particle size, crystal phase and water chemistry. PLoS One 9: 0110247.

    Article  ADS  Google Scholar 

  21. Zhu, Z., T. Chen, Y. Gu, J. Warren, and R. Osgood. 2005. Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts: A comparative study. Chemistry of Materials 17: 4227–4234.

    Article  Google Scholar 

  22. Karlsson, H.L., P. Cronholm, J. Gustafsson, and L. Moller. 2008. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology 21: 1726–1732.

    Article  Google Scholar 

  23. Lai, J.C., M.B. Lai, S. Jandhyam, V.V. Dukhande, A. Bhushan, C.K. Daniels, and S.W. Leung. 2008. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. International Journal of Nanomedicine 3: 533–545.

    Google Scholar 

  24. Horie, M., K. Fujita, H. Kato, S. Endoh, K. Nishio, L.K. Komaba, A. Nakamura, A. Miyauchi, S. Kinugasa, Y. Hagihara, E. Niki, Y. Yoshida, and H. Iwahashi. 2012. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: Metal ion release, adsorption ability and specific surface area. Metallomics 4: 350–360.

    Article  Google Scholar 

  25. Ivask, A., T. Titma, M. Visnapuu, H. Vija, A. Kakinen, M. Sihtmae, S. Pokhrel, L. Madler, M. Heinlaan, V. Kisand, R. Shimmo, and A. Kahru. 2015. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Current Topics in Medicinal Chemistry 15: 1914–1929.

    Article  Google Scholar 

  26. Hsu, A., F. Liu, Y.H. Leung, A.P. Ma, A.B. Djurisic, F.C. Leung, W.K. Chan, and H.K. Lee. 2014. Is the effect of surface modifying molecules on antibacterial activity universal for a given material? Nanoscale 6: 10323–10331.

    Article  ADS  Google Scholar 

  27. Ng, A.M., C.M. Chan, M.Y. Guo, Y.H. Leung, A.B. Djurisic, X. Hu, W.K. Chan, F.C. Leung, and S.Y. Tong. 2013. Antibacterial and photocatalytic activity of TiO2 and ZnO nanomaterials in phosphate buffer and saline solution. Applied Microbiology and Biotechnology 97: 5565–5573.

    Article  Google Scholar 

  28. Lin, S., Y. Zhao, T. **a, H. Meng, Z. Ji, R. Liu, S. George, S. **ong, X. Wang, H. Zhang, S. Pokhrel, L. Madler, R. Damoiseaux, S. Lin, and A.E. Nel. 2011. High contentscreening in zebra fish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 5: 7284–7295.

    Article  Google Scholar 

  29. Murdock, R.C., L. Braydich-Stolle, A.M. Schrand, J.J. Schlager, and S.M. Hussain. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences 101: 239–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthikeyan, B., Gnanakumar, G., Therasa Alphonsa, A. (2023). Biological Interactions of Metal Oxides—An Insight. In: Nano Metal Oxides. Springer, Singapore. https://doi.org/10.1007/978-981-19-9444-9_6

Download citation

Publish with us

Policies and ethics

Navigation