A Study of Breast Cancer Identification with Deep Learning Techniques

  • Chapter
  • First Online:
Information and Communication Technology for Competitive Strategies (ICTCS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 615))

  • 349 Accesses

Abstract

Breast cancer is currently the utmost often analysed malice in females, and number of cases is steadily rising. If breast cancer is detected and treated early enough, there is a high possibility of a positive outcome. As a result, some researchers have developed deep automated algorithms for forecasting the development of cancer cells using medical imaging modalities for their efficiency and accuracy. There are currently just an insufficient review papers on breast cancer identification that synthesise about the previous trainings. These investigations, however, were impotent to report new structures and modalities in the discovery of breast cancer. The changing structural design for deep learning-based breast cancer identification is the subject of this review. This assessment explores the merits and drawbacks of existing deep learning structures, investigates the datasets employed, and assesses picture pre-processing approaches in the sections that follow. A detailed overview of several modalities of medical images, performance measures and findings, obstacles, and investigation prospects for forthcoming researchers is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breast cancer (2021) Available at: https://www.who.int/news-room/fact-sheets/detail/breast-cancer. Accessed 19 July 2021

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249 [CrossRef]

    Google Scholar 

  3. van der Pol CC, Moelans CB, Manson QF, Batenburg MC, van der Wall E, Rinkes IB, Verkooijen L, Raman V, van Diest PJ (2021) Cytoplasmic DDX3 as prognosticator in male breast cancer. VirchowsArchiv 479:647–655 [CrossRef] [PubMed]

    Google Scholar 

  4. Hossain MS, Ferdous S, Karim-Kos HE (2014) Breast cancer in South Asia: a Bangladeshi perspective. Cancer Epidemiol 38:465–470 [CrossRef] [PubMed]

    Google Scholar 

  5. Uddin AK, Khan ZJ, Islam J, Mahmud A (2013) Cancer care scenario in Bangladesh. South Asian J Cancer 2:102 [CrossRef]

    Google Scholar 

  6. Bellah SF, Salam MA, Karim MR, Hossain MJ, Ashrafudoulla M (2016) Epidemiology of breast cancer among the female patients in Bangladesh. Orient Pharm Exp Med 16:85–95 [CrossRef]

    Google Scholar 

  7. Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MAG (2015) Convolutional neural networks for mammography mass lesion classification. In: Proceedings of the 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 Aug 2015, pp 797–800

    Google Scholar 

  8. Yap MH, Pons G, Martí J, Ganau S, Sentís M, Zwiggelaar R, Davison AK, Martí R (2017) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22:1218–1226 [CrossRef]

    Google Scholar 

  9. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31:198–211 [CrossRef]

    Google Scholar 

  10. Brem RF, Rapelyea JA, Zisman G, Hoffmeister JW, DeSimio MP (2005) Evaluation of breast cancer with a computer-aided detection system by mammographic appearance and histopathology. Cancer Interdiscip Int J Am Cancer Soc 104:931–935 [CrossRef]

    Google Scholar 

  11. Schneider M, Yaffe M (2000) Better detection: improving our chances. In: Proceedings of the digital mammography: 5th international workshop on digital mammography (IWDM), Toronto, ON, Canada, 11–14 June 2000, pp 3–6

    Google Scholar 

  12. Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, Liang DH, Ashley EA, Zou JY (2020) Deep learning interpretation of echocardiograms. NPJ Digit Med 3:10 [CrossRef] [PubMed]

    Google Scholar 

  13. Huang D, Bai H, Wang L, Hou Y, Li L, **a Y, Yan Z, Chen W, Chang L, Li W (2021) The application and development of deep learning in radiotherapy: a systematic review. Technol Cancer Res Treat 20:15330338211016386 [CrossRef]

    Google Scholar 

  14. Munir K, Elahi H, Farooq MU, Ahmed S, Frezza F, Rizzi A (2021) Detection and screening of COVID-19 through chest computed tomography radiographs using deep neural networks. In: Data science for COVID-19. Elsevier, Amsterdam, The Netherlands, pp 63–73

    Google Scholar 

  15. Hutchinson L, Steiert B, Soubret A, Wagg J, Phipps A, Peck R, Charoin JE, Ribba B (2019) Models and machines: how deep learning will take clinical pharmacology to the next level. CPT Pharmacomet Syst Pharmacol 8:131 [CrossRef] [PubMed]

    Google Scholar 

  16. Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform 7:29 [CrossRef]

    Google Scholar 

  17. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A (2019) A primer on deep learning in genomics. Nat Genet 51:12–18 [CrossRef]

    Google Scholar 

  18. Munir K, Frezza F, Rizzi A (2021) Deep learning for brain tumor segmentation. In: Deep learning for cancer diagnosis. Springer, Berlin/Heidelberg, Germany, pp 189–201

    Google Scholar 

  19. Munir K, Frezza F, Rizzi A (2021) Brain tumor segmentation using 2D-UNET convolutional neural network. In: Deep learning for cancer diagnosis. Springer, Berlin/Heidelberg, Germany, pp 239–248

    Google Scholar 

  20. Murthy NS, Bethala C (2021) Review paper on research direction towards cancer prediction and prognosis using machine learning and deep learning models. J Ambient Intell Hum Comput 1–19 [CrossRef]

    Google Scholar 

  21. Aggarwal R, Sounderajah V, Martin G, Ting DS, Karthikesalingam A, King D, Ashrafian H, Darzi A (2021) Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med 4:65 [CrossRef]

    Google Scholar 

  22. **e J, Liu R, Luttrell IV J, Zhang C (2019) Deep learning based analysis of histopathological images of breast cancer. Front Genet 10:80 [CrossRef]

    Google Scholar 

  23. Lehman CD, Yala A, Schuster T, Dontchos B, Bahl M, Swanson K, Barzilay R (2019) Mammographic breast density assessment using deep learning: clinical implementation. Radiology 290:52–58 [CrossRef]

    Google Scholar 

  24. Le H, Gupta R, Hou L, Abousamra S, Fassler D, Torre-Healy L, Moffitt RA, Kurc T, Samaras D, Batiste R et al (2020) Utilizing automated breast cancer detection to identify spatial distributions of tumor infiltrating lymphocytes in invasive breast cancer. Am J Pathol 190:1491–1504 [CrossRef]

    Google Scholar 

  25. Krithiga R, Geetha P (2021) Breast cancer detection, segmentation and classification on histopathology images analysis: a systematic review. Arch Comput Methods Eng 28:2607–2619 [CrossRef]

    Google Scholar 

  26. Bai J, Posner R, Wang T, Yang C, Nabavi S (2021) Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: a review. Med Image Anal 71:102049 [CrossRef]

    Google Scholar 

  27. Qiu Y, Yan S, Gundreddy RR, Wang Y, Cheng S, Liu H, Zheng B (2017) A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology. J X-ray Sci Technol 25:751–763

    Google Scholar 

  28. Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25:265–281

    Article  Google Scholar 

  29. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554 [CrossRef]

    Google Scholar 

  30. Abdel-Zaher AM, Eldeib AM (2016) Breast cancer classification using deep belief networks. Expert Syst Appl 46:139–144 [CrossRef]

    Google Scholar 

  31. Khademi M, Nedialkov NS (2015) Probabilistic graphical models and deep belief networks for prognosis of breast cancer. In: Proceedings of the 2015 IEEE 14th international conference on machine learning and applications (ICMLA), Miami, FL, USA, 9–11 Dec 2015, pp 727–732

    Google Scholar 

  32. Omran NF, Abd-el Ghany SF, Saleh H, Ali AA, Gumaei A, Al-Rakhami M (2021) Applying deep learning methods on time-series data for forecasting covid-19 in Egypt, Kuwait, and Saudi Arabia. Complexity 2021(Article ID 6686745):13 pp

    Google Scholar 

  33. Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016) Breast cancer histopathological image classification using convolutional neural networks. In: Proceedings of the 2016 international joint conference on neural networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016, pp 2560–2567

    Google Scholar 

  34. Lahoura V, Singh H, Aggarwal A, Sharma B, Mohammed MA, Damaševicˇius R, Kadry S, Cengiz K (2021) Cloud computing-based framework for breast cancer diagnosis using extreme learning machine. Diagnostics 11:241

    Article  Google Scholar 

  35. Tiwari S (2019) Ultimate journey of GANs. Available at: https://medium.com/analytics-vidhya/ultimate-journey-of-gans-7e5df53b01b. Accessed 19 July 2021

  36. Shams S, Platania R, Zhang J, Kim J, Lee K, Park SJ (2018) Deep generative breast cancer screening and diagnosis. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, Switzerland, pp 859–867

    Google Scholar 

  37. Singh VK, Rashwan HA, Romani S, Akram F, Pandey N, Sarker MMK, Saleh A, Arenas M, Arquez M, Puig D et al (2020) Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst Appl 139:112855

    Article  Google Scholar 

  38. Wolberg WH, Street WN, Mangasarian OL (1993) Breast cytology diagnosis via digital image analysis. Anal Quant Cytol Histol 15:396–404

    Google Scholar 

  39. Battineni G, Sagaro GG, Chinatalapudi N, Amenta F (2020) Applications of machine learning predictive models in the chronic disease diagnosis. J Pers Med 10(2):21

    Article  Google Scholar 

  40. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057 [CrossRef]

    Google Scholar 

  41. Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts I, Stamatakis E, Cerneaz N, Kok S et al (2015) Mammographic Image Analysis Society (MIAS) Database v1.21. 2015. Available at: https://www.repository.cam.ac.uk/handle/1810/250394. Accessed 19 July 2021

  42. Suckling JP (1994) The mammographic image analysis society digital mammogram database. Digit Mammograms 1069:375–386

    Google Scholar 

  43. Sert E, Ertekin S, Halici U (2017) Ensemble of convolutional neural networks for classification of breast microcalcification from mammograms. In: Proceedings of the 2017 39th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017, pp 689–692

    Google Scholar 

  44. Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergen-Van De Kaa C, Bult P, Van Ginneken B, Van Der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286

    Google Scholar 

  45. Tessa SKJ. The difference between an MRI and CT scan. 2018. Available at: https://www.healthline.com/health/ct-scan-vs-mri

  46. Singh D, Singh AK (2020) Role of image thermography in early breast cancer detection—past, present and future. Comput Methods Programs Biomed 183:105074

    Article  Google Scholar 

  47. Borchartt TB, Conci A, Lima RC, Resmini R, Sanchez A (2013) Breast thermography from an image processing viewpoint: a survey. Signal Process 93:2785–2803

    Article  Google Scholar 

  48. Silva AA, Cardoso MR, Rezende LM, Lin JQ, Guimaraes F, Silva GRP, Murgu M, Priolli DG, Eberlin MN, Tata A et al (2020) Multiplatform investigation of plasma and tissue lipid signatures of breast cancer using mass spectrometry tools. Int J Mol Sci 21:3611 [CrossRef]

    Google Scholar 

  49. Al-Wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM, Latiff A, Ismail MN (2020) Comparative proteomic analysis of different stages of breast cancer tissues using ultrahigh performance liquid chromatography tandem mass spectrometer. PLoS ONE 15:e0227404

    Google Scholar 

  50. Hadad O, Bakalo R, Ben-Ari R, Hashoul S, Amit G (2017) Classification of breast lesions using cross-modal deep learning. In: Proceedings of the 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April, pp 109–112

    Google Scholar 

  51. Umamageswari A, Leo Vijilious MA (2019) Enhancing security in medical image informatics with various geometrical attacks. Curr Sci 2(3):420–429

    Google Scholar 

  52. Kumar I, Bhadauria H, Virmani J, Thakur S (2017) A classification framework for prediction of breast density using an ensemble of neural network classifiers. Biocybern Biomed Eng 37:217–228

    Google Scholar 

  53. Wu J, Shi J, Li Y, Suo J, Zhang Q (2016) Histopathological image classification using random binary hashing based PCANet and bilinear classifier. In: Proceedings of the 2016 24th European signal processing conference (EUSIPCO), Budapest, Hungary, 29 Aug–2 Sept 2016, pp 2050–2054

    Google Scholar 

  54. Ronoud S, Asadi S (2019) An evolutionary deep belief network extreme learning-based for breast cancer diagnosis. Soft Comput 23:13139–13159

    Article  Google Scholar 

  55. Mandala S, Di TC (2017) ECG parameters for malignant ventricular arrhythmias: a comprehensive review. J Med Biol Eng 37:441–453

    Article  Google Scholar 

  56. Yu K, Tan L, Lin L, Cheng X, Yi Z, Sato T (2021) Deep-learning-empowered breast cancer auxiliary diagnosis for 5GB remote E-health. IEEE Wirel Commun 28:54–61

    Article  Google Scholar 

  57. Yan R, Ren F, Wang Z, Wang L, Zhang T, Liu Y, Rao X, Zheng C, Zhang F (2020) Breast cancer histopathological image classification using a hybrid deep neural network. Methods 173:52–60

    Article  Google Scholar 

  58. Feng Y, Zhang L, Yi Z (2018) Breast cancer cell nuclei classification in histopathology images using deep neural networks. Int J Comput Assist Radiol Surg 13:179–191

    Google Scholar 

  59. Ting FF, Tan YJ, Sim KS (2019) Convolutional neural network improvement for breast cancer classification. Expert Syst Appl 120:103–115

    Google Scholar 

  60. Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S (2017) Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep 7:4172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sujitha Priya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sujitha Priya, D., Radha, V. (2023). A Study of Breast Cancer Identification with Deep Learning Techniques. In: Kaiser, M.S., **e, J., Rathore, V.S. (eds) Information and Communication Technology for Competitive Strategies (ICTCS 2022). Lecture Notes in Networks and Systems, vol 615. Springer, Singapore. https://doi.org/10.1007/978-981-19-9304-6_67

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9304-6_67

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9303-9

  • Online ISBN: 978-981-19-9304-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation